Suppr超能文献

时变转速和非对称域标签条件下旋转机械的跨域故障诊断

Cross-Domain Fault Diagnosis of Rotating Machinery Under Time-Varying Rotational Speed and Asymmetric Domain Label Condition.

作者信息

Liu Siyuan, Huang Jinying, Han Peiyu, Fan Zhenfang, Ma Jiancheng

机构信息

School of Data Science and Technology, North University of China, Taiyuan 030051, China.

School of Mechanical Engineering, North University of China, Taiyuan 030051, China.

出版信息

Sensors (Basel). 2025 Apr 30;25(9):2818. doi: 10.3390/s25092818.

Abstract

In practical engineering, the asymmetric problem of the domain label space is inevitable owing to the prior fault information of the target domain being difficult to completely obtain. This implies that the target domain may include unseen fault classes or lack certain fault classes found in the source domain. To maintain diagnostic performance and knowledge generalization across different speeds, cross-domain intelligent fault diagnosis (IFD) models are widely researched. However, the rigid requirement for consistent domain label spaces hinders the IFD model from identifying private fault patterns in the target domain. In practical engineering, the asymmetric domain label space problem is inevitable, as the target domain's fault prior information is difficult to completely obtain. This means that the target domain may have unseen fault classes or lack some source domain fault classes. To address these challenges, we propose an asymmetric cross-domain IFD method with label position matching and boundary sparse learning (ASY-WLB). It reduces the IFD model's dependence on domain label space symmetry during transient speed variation. To integrate signal prior knowledge for transferable feature representation, angular resampling is used to lessen the time-varying speed fluctuations' impact on the IFD model. We design a label-positioning information compensation mechanism and weighted contrastive domain discrepancy, accurately matching unseen class label information and constraining the diagnosis model's decision boundary from a data conditional distribution perspective. Finally, extensive experiments on two time-varying speed datasets demonstrate our method's superiority.

摘要

在实际工程中,由于难以完全获取目标域的先验故障信息,域标签空间的不对称问题不可避免。这意味着目标域可能包含未见过的故障类别,或者缺少源域中发现的某些故障类别。为了在不同速度下保持诊断性能和知识泛化能力,跨域智能故障诊断(IFD)模型得到了广泛研究。然而,对一致域标签空间的严格要求阻碍了IFD模型识别目标域中的私有故障模式。在实际工程中,不对称域标签空间问题是不可避免的,因为目标域的故障先验信息很难完全获取。这意味着目标域可能存在未见过的故障类别,或者缺少一些源域故障类别。为应对这些挑战,我们提出了一种具有标签位置匹配和边界稀疏学习的不对称跨域IFD方法(ASY-WLB)。它减少了IFD模型在瞬态速度变化期间对域标签空间对称性的依赖。为了整合用于可转移特征表示的信号先验知识,采用角度重采样来减轻时变速度波动对IFD模型的影响。我们设计了一种标签定位信息补偿机制和加权对比域差异,从未见过的类别标签信息进行精确匹配,并从数据条件分布的角度约束诊断模型的决策边界。最后,在两个时变速度数据集上进行的大量实验证明了我们方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808d/12074226/416a3685a359/sensors-25-02818-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验