Jia Sixiang, Wang Jinrui, Zhang Xiao, Han Baokun
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Entropy (Basel). 2021 Apr 1;23(4):424. doi: 10.3390/e23040424.
Domain adaptation-based models for fault classification under variable working conditions have become a research focus in recent years. Previous domain adaptation approaches generally assume identical label spaces in the source and target domains, however, such an assumption may be no longer legitimate in a more realistic situation that requires adaptation from a larger and more diverse source domain to a smaller target domain with less number of fault classes. To address the above deficiencies, we propose a partial transfer fault diagnosis model based on a weighted subdomain adaptation network (WSAN) in this paper. Our method pays more attention to the local data distribution while aligning the global distribution. An auxiliary classifier is introduced to obtain the class-level weights of the source samples, so the network can avoid negative transfer caused by unique fault classes in the source domain. Furthermore, a weighted local maximum mean discrepancy (WLMMD) is proposed to capture the fine-grained transferable information and obtain sample-level weights. Finally, relevant distributions of domain-specific layer activations across different domains are aligned. Experimental results show that our method could assign appropriate weights to each source sample and realize efficient partial transfer fault diagnosis.
近年来,基于域自适应的可变工况下故障分类模型已成为研究热点。以往的域自适应方法通常假设源域和目标域中的标签空间相同,然而,在更现实的情况下,即需要从更大、更多样化的源域适应到具有较少故障类别的较小目标域时,这种假设可能不再合理。为了弥补上述不足,本文提出了一种基于加权子域自适应网络(WSAN)的部分迁移故障诊断模型。我们的方法在对齐全局分布的同时,更加关注局部数据分布。引入了一个辅助分类器来获得源样本的类级权重,这样网络就可以避免源域中独特故障类引起的负迁移。此外,还提出了一种加权局部最大均值差异(WLMMD)来捕获细粒度的可迁移信息并获得样本级权重。最后,对齐不同域中特定域层激活的相关分布。实验结果表明,我们的方法可以为每个源样本分配适当的权重,并实现高效的部分迁移故障诊断。