Suppr超能文献

扩展现实头戴式显示器中基于手势的人机界面性能测量

Performance Measurement of Gesture-Based Human-Machine Interfaces Within eXtended Reality Head-Mounted Displays.

作者信息

Angrisani Leopoldo, D'Arco Mauro, De Benedetto Egidio, Duraccio Luigi, Lo Regio Fabrizio, Sansone Michele, Tedesco Annarita

机构信息

Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, 80125 Napoli, Italy.

Department of Precision and Regenerative Medicine and Ionian Area-Section of Engineering, University of Bari Aldo Moro, 70121 Bari, Italy.

出版信息

Sensors (Basel). 2025 Apr 30;25(9):2831. doi: 10.3390/s25092831.

Abstract

This paper proposes a method for measuring the performance of Human-Machine Interfaces based on hand-gesture recognition, implemented within eXtended Reality Head-Mounted Displays. The proposed method leverages a systematic approach, enabling performance measurement in compliance with the Guide to the Expression of Uncertainty in Measurement. As an initial step, a testbed is developed, comprising a series of icons accommodated within the field of view of the eXtended Reality Head-Mounted Display considered. Each icon must be selected through a cue-guided task using the hand gestures under evaluation. Multiple selection cycles involving different individuals are conducted to derive suitable performance metrics. These metrics are derived considering the specific parameters characterizing the hand gestures, as well as the uncertainty contributions arising from intra- and inter-individual variability in the measured quantity values. As a case study, the eXtended Reality Head-Mounted Display Microsoft HoloLens 2 and the finger-tapping gesture were investigated. Without compromising generality, the obtained results show that the proposed method can provide valuable insights into performance trends across individuals and gesture parameters. Moreover, the statistical analyses employed can determine whether increased individual familiarity with the Human-Machine Interface results in faster task completion without a corresponding decrease in accuracy. Overall, the proposed method provides a comprehensive framework for evaluating the compliance of hand-gesture-based Human-Machine Interfaces with target performance specifications related to specific application contexts.

摘要

本文提出了一种基于手势识别来测量人机界面性能的方法,该方法在扩展现实头戴式显示器中实现。所提出的方法采用了一种系统的方法,能够按照《测量不确定度表示指南》进行性能测量。作为第一步,开发了一个测试平台,其中包括在所考虑的扩展现实头戴式显示器的视野范围内的一系列图标。每个图标都必须通过使用正在评估的手势的提示引导任务来选择。进行涉及不同个体的多个选择周期,以得出合适的性能指标。这些指标的得出考虑了表征手势的特定参数,以及测量量值中个体内部和个体之间变异性所产生的不确定度贡献。作为一个案例研究,对扩展现实头戴式显示器微软HoloLens 2和轻敲手指手势进行了研究。在不影响一般性的情况下,获得的结果表明,所提出的方法可以为个体和手势参数的性能趋势提供有价值的见解。此外,所采用的统计分析可以确定个体对人机界面的熟悉程度提高是否会导致任务完成更快,而不会相应降低准确性。总体而言,所提出的方法提供了一个全面的框架,用于评估基于手势的人机界面与特定应用场景相关的目标性能规范的符合性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/12074097/46bdc948b862/sensors-25-02831-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验