Suppr超能文献

基于陀螺仪的连续人体手势识别,用于人机交互的多模式可穿戴输入设备。

Gyroscope-Based Continuous Human Hand Gesture Recognition for Multi-Modal Wearable Input Device for Human Machine Interaction.

机构信息

Department of Automotive Engineering, Hanyang University, Seoul 04763, Korea.

出版信息

Sensors (Basel). 2019 Jun 5;19(11):2562. doi: 10.3390/s19112562.

Abstract

Human hand gestures are a widely accepted form of real-time input for devices providing a human-machine interface. However, hand gestures have limitations in terms of effectively conveying the complexity and diversity of human intentions. This study attempted to address these limitations by proposing a multi-modal input device, based on the observation that each application program requires different user intentions (and demanding functions) and the machine already acknowledges the running application. When the running application changes, the same gesture now offers a new function required in the new application, and thus, we can greatly reduce the number and complexity of required hand gestures. As a simple wearable sensor, we employ one miniature wireless three-axis gyroscope, the data of which are processed by correlation analysis with normalized covariance for continuous gesture recognition. Recognition accuracy is improved by considering both gesture patterns and signal strength and by incorporating a learning mode. In our system, six unit hand gestures successfully provide most functions offered by multiple input devices. The characteristics of our approach are automatically adjusted by acknowledging the application programs or learning user preferences. In three application programs, the approach shows good accuracy (90-96%), which is very promising in terms of designing a unified solution. Furthermore, the accuracy reaches 100% as the users become more familiar with the system.

摘要

人类手势是一种广泛接受的实时输入设备,为人机界面提供了一种方式。然而,手势在有效地传达人类意图的复杂性和多样性方面存在局限性。本研究试图通过提出一种多模态输入设备来解决这些局限性,该设备基于这样一种观察,即每个应用程序都需要不同的用户意图(和所需功能),并且机器已经了解正在运行的应用程序。当运行的应用程序发生变化时,相同的手势现在提供了新应用程序所需的新功能,因此,我们可以大大减少所需手势的数量和复杂性。作为一种简单的可穿戴传感器,我们使用一个微型无线三轴陀螺仪,其数据通过与归一化协方差的相关分析进行处理,以实现连续的手势识别。通过考虑手势模式和信号强度并结合学习模式,可以提高识别精度。在我们的系统中,六个单位手势成功提供了多个输入设备提供的大多数功能。我们的方法的特点是通过识别应用程序或学习用户偏好来自动调整。在三个应用程序中,该方法表现出了很好的准确性(90-96%),这对于设计统一的解决方案来说是非常有前途的。此外,随着用户越来越熟悉系统,准确性达到了 100%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f61/6603535/83945e9f9967/sensors-19-02562-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验