Ming Zixuan, Li Xianzhuo, Wang Yanyi, Qu Yuanzhe, Lu Zhiyong, Jia Honghui, Yuan Haoming, Zhang Qianwu, Zhang Junjie, Song Yingxiong
Key Laboratory of Specialty Optics and Optical Access Networks, Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China.
Key Laboratory of Space Laser Transmission and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201899, China.
Sensors (Basel). 2025 Apr 30;25(9):2851. doi: 10.3390/s25092851.
This paper solves the challenge of precise dual-frequency laser control in Airborne Coherent Doppler LiDAR systems by implementing an innovative laser driver architecture, which integrates compact hardware design with cascade Proportional-Integral-Derivative (PID) control and a frequency-temperature compensation mechanism. The experimental results demonstrate eminent performance with long-term temperature fluctuation below 0.007 °C, temperature stabilizing time under 4 s and long-term power fluctuation of the linear constant current source being <1%. The system enables wide-range temperature-frequency adjustment for individual lasers and dynamically adjusts the dual-laser beat frequencies between -1 GHz and +2 GHz, achieving the frequency difference fluctuation within 3 MHz. These achievements greatly enhance LiDAR performance and create possibilities for broader applications in dynamic environmental sensing, atmospheric monitoring, deep-space exploration, and autonomous systems.
本文通过实现一种创新的激光驱动器架构,解决了机载相干多普勒激光雷达系统中精确双频激光控制的挑战,该架构将紧凑的硬件设计与级联比例积分微分(PID)控制以及频率-温度补偿机制相结合。实验结果表明,该系统具有卓越的性能,长期温度波动低于0.007°C,温度稳定时间在4秒以内,线性恒流源的长期功率波动小于1%。该系统能够对单个激光器进行宽范围的温度-频率调节,并在-1 GHz至+2 GHz之间动态调节双激光拍频,实现频率差波动在3 MHz以内。这些成果极大地提升了激光雷达的性能,并为在动态环境传感、大气监测、深空探测和自主系统等更广泛应用创造了可能性。