Suppr超能文献

基于惯性和磁场信息的高精度行人室内定位方法

High-Precision Pedestrian Indoor Positioning Method Based on Inertial and Magnetic Field Information.

作者信息

Yu Ning, Chen Xuanhe, Feng Renjian, Wu Yinfeng

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

出版信息

Sensors (Basel). 2025 May 3;25(9):2891. doi: 10.3390/s25092891.

Abstract

Long-term and high-precision positioning is the key to the pedestrian indoor positioning method. The estimation methods relying only on the inertial measurement unit (IMU) itself lack external observations that can provide absolute information, and the cumulative error easily leads to the distortion of the calculated trajectory. In this paper, based on the Extended Kalman Filter (EKF) algorithm, the environmental magnetic field information is taken as the external observation quantity, and a positioning method combining inertial navigation and the magnetic field is proposed. The cumulative error is suppressed from both the yaw angle and pedestrian pose, and the overall navigation and positioning accuracy is improved. The experimental results show that the proposed fusion method greatly improves the suppression of yaw angle and displacement errors. In a total distance of 297.08 m, the yaw angle error is reduced from 11.043° to 4.778°, and the position error is reduced from 8.999 m to 0.364 m. The relative average error decreases from 3.02% to 0.12%.

摘要

长期且高精度的定位是行人室内定位方法的关键。仅依赖惯性测量单元(IMU)本身的估计方法缺乏能提供绝对信息的外部观测,累积误差容易导致计算轨迹失真。本文基于扩展卡尔曼滤波器(EKF)算法,将环境磁场信息作为外部观测量,提出一种惯性导航与磁场相结合的定位方法。从偏航角和行人姿态两方面抑制累积误差,提高了整体导航定位精度。实验结果表明,所提出的融合方法极大地改善了对偏航角和位移误差的抑制。在总距离297.08米的情况下,偏航角误差从11.043°降至4.778°,位置误差从8.999米降至0.364米。相对平均误差从3.02%降至0.12%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b9/12074160/77f12d21f6eb/sensors-25-02891-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验