Suppr超能文献

通过异常值感知量化实现基于传感器的视觉系统的高效深度学习模型压缩

Efficient Deep Learning Model Compression for Sensor-Based Vision Systems via Outlier-Aware Quantization.

作者信息

Yoo Joonhyuk, Ban Guenwoo

机构信息

College of Information and Communication Engineering, Daegu University, Gyeongsan 38453, Republic of Korea.

NPS Co., Ltd., Cheongju 28371, Republic of Korea.

出版信息

Sensors (Basel). 2025 May 5;25(9):2918. doi: 10.3390/s25092918.

Abstract

With the rapid growth of sensor technology and computer vision, efficient deep learning models are essential for real-time image feature extraction in resource-constrained environments. However, most existing quantized deep neural networks (DNNs) are highly sensitive to outliers, leading to severe performance degradation in low-precision settings. Our study reveals that outliers extending beyond the nominal weight distribution significantly increase the dynamic range, thereby reducing quantization resolution and affecting sensor-based image analysis tasks. To address this, we propose an outlier-aware quantization (OAQ) method that effectively reshapes weight distributions to enhance quantization accuracy. By analyzing previous outlier-handling techniques using structural similarity (SSIM) measurement results, we demonstrated that OAQ significantly reduced the negative impact of outliers while maintaining computational efficiency. Notably, OAQ was orthogonal to existing quantization schemes, making it compatible with various quantization methods without additional computational overhead. Experimental results on multiple CNN architectures and quantization approaches showed that OAQ effectively mitigated quantization errors. In post-training quantization (PTQ), our 4-bit OAQ ResNet20 model achieved improved accuracy compared with full-precision counterparts, while in quantization-aware training (QAT), OAQ enhanced 2-bit quantization performance by 43.55% over baseline methods. These results confirmed the potential of OAQ for optimizing deep learning models in sensor-based vision applications.

摘要

随着传感器技术和计算机视觉的快速发展,高效的深度学习模型对于资源受限环境下的实时图像特征提取至关重要。然而,大多数现有的量化深度神经网络(DNN)对异常值高度敏感,导致在低精度设置下性能严重下降。我们的研究表明,超出标称权重分布的异常值会显著增加动态范围,从而降低量化分辨率并影响基于传感器的图像分析任务。为了解决这个问题,我们提出了一种异常值感知量化(OAQ)方法,该方法有效地重塑权重分布以提高量化精度。通过使用结构相似性(SSIM)测量结果分析先前的异常值处理技术,我们证明了OAQ在保持计算效率的同时显著降低了异常值的负面影响。值得注意的是,OAQ与现有的量化方案正交,使其能够与各种量化方法兼容,而无需额外的计算开销。在多个CNN架构和量化方法上的实验结果表明,OAQ有效地减轻了量化误差。在训练后量化(PTQ)中,我们的4位OAQ ResNet20模型与全精度模型相比,精度得到了提高,而在量化感知训练(QAT)中,OAQ比基线方法将2位量化性能提高了43.55%。这些结果证实了OAQ在优化基于传感器的视觉应用中的深度学习模型方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e45/12074280/d664a8e409fa/sensors-25-02918-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验