Zhang Binbin, Zhang Wenhui, Luo Wei, Liang Zhijie, Hong Yan, Li Jianhui, Zhou Guoyun, He Wei
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
Beijing Spacecraft, China Academy of Space Technology, Beijing 100094, China.
Sensors (Basel). 2025 May 7;25(9):2936. doi: 10.3390/s25092936.
This study investigated the impact of zinc oxide's (ZnO's) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). The structural analyses confirmed the successful formation of wurtzite ZnO and enhanced β-phase content in the PVDF/ZnO composites. At a degree of 15 wt% loading, the ZnO-NS nanoparticles achieved the highest β-phase fraction (81.3%) in PVDF due to their high specific surface area, facilitating dipole alignment and strain-induced crystallization. The optimized PVDF/ZnO-NS-15 sensor demonstrated superior piezoelectric outputs (4.75 V, 140 mV/N sensitivity) under a 27 N force, outperforming its ZnO-NR counterparts (3.84 V, 100 mV/N). The cyclic tests revealed exceptional durability (<5% signal attenuation after 1000 impacts) and a rapid response (<100 ms). The application trials validated their real-time motion-monitoring capabilities, including finger joint flexion detection. This work highlights the morphology-dependent interfacial polarization as a critical factor for high-performance flexible sensors, offering a scalable DIW-based strategy for wearable electronics.
本研究调查了氧化锌(ZnO)的形态对用于柔性传感器的聚偏二氟乙烯(PVDF)复合材料压电性能的影响。通过水热法合成了棒状(NR)和片状(NS)ZnO纳米颗粒,并通过直接墨水书写(DIW)将其掺入PVDF中。结构分析证实了纤锌矿ZnO的成功形成以及PVDF/ZnO复合材料中β相含量的增加。在15 wt%的负载量下,ZnO-NS纳米颗粒由于其高比表面积,促进了偶极排列和应变诱导结晶,在PVDF中实现了最高的β相分数(81.3%)。优化后的PVDF/ZnO-NS-15传感器在27 N的力作用下表现出优异的压电输出(4.75 V,灵敏度为140 mV/N),优于其ZnO-NR对应物(3.84 V,100 mV/N)。循环测试显示出卓越的耐久性(1000次冲击后信号衰减<5%)和快速响应(<100 ms)。应用试验验证了它们的实时运动监测能力,包括手指关节弯曲检测。这项工作强调了形态依赖的界面极化是高性能柔性传感器的关键因素,为可穿戴电子产品提供了一种基于DIW的可扩展策略。