Liu Bowen, Yang Yisheng, Wang Guishan, Li Yin
China Aerodynamics Research and Development Center, Manyang 621000, China.
Materials (Basel). 2025 Apr 26;18(9):1973. doi: 10.3390/ma18091973.
This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite element stiffness matrices, incorporating both Amor and Miehe elastic energy decomposition schemes to address tension-compression asymmetry in crack evolution. Second, a multi-fidelity neural network strategy is integrated with the gradient phase-field element to mitigate characteristic length dependency in residual strength predictions. Comparative analyses demonstrate that the gradient finite element achieves smoother field transitions at element interfaces compared to conventional homogeneous elements, as quantified in both stress and damage fields. The Miehe decomposition scheme outperforms the Amor model in capturing complex crack trajectories. Validation against the average strain energy criterion indicates the present approach enhances residual strength prediction accuracy by 39.07% to 44.05%, establishing a robust numerical tool for damage tolerance assessment in graded materials.
本研究开发了一种计算框架,用于评估裂纹止裂孔钻削后钨铜功能梯度材料的残余强度。所提出的方法具有两个关键创新点:第一,通过在有限元刚度矩阵中表示梯度效应,建立了相场等参梯度单元,结合了阿莫尔(Amor)和米厄(Miehe)弹性能量分解方案,以解决裂纹扩展中的拉压不对称问题。第二,将多保真神经网络策略与梯度相场单元相结合,以减轻残余强度预测中的特征长度依赖性。对比分析表明,与传统的均匀单元相比,梯度有限元在单元界面处实现了更平滑的场过渡,这在应力场和损伤场中均得到了量化。在捕捉复杂裂纹轨迹方面,米厄分解方案优于阿莫尔模型。根据平均应变能准则进行验证表明,本方法将残余强度预测精度提高了39.07%至44.05%,为梯度材料的损伤容限评估建立了一个强大的数值工具。