Suppr超能文献

一种基于相场梯度元结合多保真神经网络的钨铜功能梯度材料止裂孔残余强度计算方法

A Method for Calculating Residual Strength of Crack Arrest Hole on Tungsten-Copper Functionally Graded Materials by Phase-Field Gradient Element Combined with Multi-Fidelity Neural Network.

作者信息

Liu Bowen, Yang Yisheng, Wang Guishan, Li Yin

机构信息

China Aerodynamics Research and Development Center, Manyang 621000, China.

出版信息

Materials (Basel). 2025 Apr 26;18(9):1973. doi: 10.3390/ma18091973.

Abstract

This study develops a computational framework for evaluating the residual strength of tungsten-copper functionally graded materials following crack-arrest hole drilling. The proposed methodology features two pivotal innovations: First, a phase-field isoparametric gradient elements is established through representing the gradient effect within the finite element stiffness matrices, incorporating both Amor and Miehe elastic energy decomposition schemes to address tension-compression asymmetry in crack evolution. Second, a multi-fidelity neural network strategy is integrated with the gradient phase-field element to mitigate characteristic length dependency in residual strength predictions. Comparative analyses demonstrate that the gradient finite element achieves smoother field transitions at element interfaces compared to conventional homogeneous elements, as quantified in both stress and damage fields. The Miehe decomposition scheme outperforms the Amor model in capturing complex crack trajectories. Validation against the average strain energy criterion indicates the present approach enhances residual strength prediction accuracy by 39.07% to 44.05%, establishing a robust numerical tool for damage tolerance assessment in graded materials.

摘要

本研究开发了一种计算框架,用于评估裂纹止裂孔钻削后钨铜功能梯度材料的残余强度。所提出的方法具有两个关键创新点:第一,通过在有限元刚度矩阵中表示梯度效应,建立了相场等参梯度单元,结合了阿莫尔(Amor)和米厄(Miehe)弹性能量分解方案,以解决裂纹扩展中的拉压不对称问题。第二,将多保真神经网络策略与梯度相场单元相结合,以减轻残余强度预测中的特征长度依赖性。对比分析表明,与传统的均匀单元相比,梯度有限元在单元界面处实现了更平滑的场过渡,这在应力场和损伤场中均得到了量化。在捕捉复杂裂纹轨迹方面,米厄分解方案优于阿莫尔模型。根据平均应变能准则进行验证表明,本方法将残余强度预测精度提高了39.07%至44.05%,为梯度材料的损伤容限评估建立了一个强大的数值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b79/12072201/c227271909ad/materials-18-01973-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验