Marinova Delyana, Borislavov Lyuben, Stanchovska Silva, Konstantinov Konstantin, Mutovska Monika, Stoyanov Stanimir, Zagranyarski Yulian, Danchovski Yanislav, Rasheev Hristo, Tadjer Alia, Stoyanova Radostina
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
Materials (Basel). 2025 Apr 30;18(9):2066. doi: 10.3390/ma18092066.
In recent years, bipolar organic electrode materials have gained recognition as competitive alternatives to inorganic materials due to their unique multielectron redox mechanism for energy storage. In this study, we examined the mechanism of redox reactions in naphthalimide (NI) derivatives when used as electrodes in lithium half-cells with ionic liquid electrolytes. The NI derivatives consist of three building fragments: an aromatic naphthalene core, -alkylated imide unit, and a -dichalcogenide bridge. The integration of electrochemical and microscopic methods with DFT calculations facilitates the delineation of the role of each fragment in the oxidation and reduction reactions of NI derivatives. It is found that the -dichalcogenide bridge is mainly involved in the oxidation of NI derivatives above 3.9 V, the charge compensation being achieved by electrolyte TFSI counter-ions. The reduction of NI derivatives with two Li ions is mainly due to the participation of the chalcogenide bridge, while after interaction with the next two Li ions, the imide fragment and the naphthalene moiety contribute equally to the reduction. Based on the leading role of the -dichalcogenide bridge, the redox properties of NI derivatives are effectively controlled by the gradual replacement of S with Se and Te atoms in the bridge. To improve the electronic conductivity of NIs, composites with rGO are also synthesized by a simple procedure of mechanical mixing in a centrifugal mixer. The composites rGO/NIs display a good storage performance, the best being the Se-containing analogue.
近年来,双极有机电极材料因其独特的多电子氧化还原储能机制而被视为无机材料的有竞争力的替代品。在本研究中,我们研究了萘酰亚胺(NI)衍生物在含离子液体电解质的锂半电池中用作电极时的氧化还原反应机制。NI衍生物由三个结构片段组成:芳香萘核心、烷基化酰亚胺单元和二硫属化物桥。电化学和微观方法与密度泛函理论(DFT)计算相结合,有助于描绘每个片段在NI衍生物氧化和还原反应中的作用。研究发现,二硫属化物桥主要参与3.9 V以上NI衍生物的氧化,电荷补偿由电解质双(三氟甲基磺酰)亚胺(TFSI)抗衡离子实现。NI衍生物与两个锂离子的还原主要归因于硫属化物桥的参与,而与接下来的两个锂离子相互作用后,酰亚胺片段和萘部分对还原的贡献相等。基于二硫属化物桥的主导作用,通过在桥中逐渐用硒和碲原子取代硫,可以有效控制NI衍生物的氧化还原性质。为了提高NI的电子导电性,还通过在离心混合器中机械混合的简单程序合成了与还原氧化石墨烯(rGO)的复合材料。rGO/NI复合材料表现出良好的储能性能,含硒类似物的性能最佳。