Suppr超能文献

基于近红外光谱法的德波伊斯快速鉴定及六种化学成分含量的定量分析

Rapid Identification of de Boiss and Quantitative Analysis of the Content of Six Chemical Components Based on Near-Infrared Spectroscopy.

作者信息

Zhang Yunta, Li Jian, Sun Jin, Xia Tian, Hai Yonglin, Li Jian, Yang Yongcheng, Xia Conglong

机构信息

College of Pharmacy, Dali University, Dali 671000, China.

State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Molecules. 2025 Apr 22;30(9):1867. doi: 10.3390/molecules30091867.

Abstract

This study developed a rapid, non-destructive method combining near-infrared (NIR) spectroscopy with chemometric techniques (OPLS-DA, ANN, and PLS) to accurately identify the geographic origin and quantify six key chemical components of rhizomes. The results demonstrated that the combination of NIR spectroscopy, OPLS-DA, and ANN successfully and accurately distinguished from three distinct origins. Additionally, combining partial least squares (PLS) and NIR spectroscopy, the contents of chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C, umbelliferone (7-hydroxycoumarin), senkyunolide I, and ligustilide measured by HPLC-UV were used as reference values to predict the contents of the six chemical components in , and spectral preprocessing methods optimized the model. The correlation coefficients of the final quantitative model for the contents of the six components in were between 0.7852 and 0.9538, the root mean square error of calibration (RMSEC) was between 0.0027 and 0.2530, and the root mean square error of prediction (RMSEP) was between 0.0031 and 0.4240. The results suggest that NIR spectroscopy combined with OPLS-DA and ANN can be used as a rapid and accurate method to evaluate the quality of herbs.

摘要

本研究开发了一种快速、无损的方法,将近红外(NIR)光谱与化学计量技术(OPLS-DA、人工神经网络(ANN)和偏最小二乘法(PLS))相结合,以准确识别根茎的地理来源并定量分析六种关键化学成分。结果表明,近红外光谱、OPLS-DA和人工神经网络的组合成功且准确地区分了三个不同的来源。此外,结合偏最小二乘法和近红外光谱,将高效液相色谱-紫外检测法(HPLC-UV)测定的绿原酸、异绿原酸A、异绿原酸C、伞形花内酯(7-羟基香豆素)、藁本内酯和升麻素苷的含量作为参考值,来预测根茎中六种化学成分的含量,并且光谱预处理方法优化了模型。根茎中六种成分含量的最终定量模型的相关系数在0.7852至0.9538之间,校正均方根误差(RMSEC)在0.0027至0.2530之间,预测均方根误差(RMSEP)在0.0031至0.4240之间。结果表明,近红外光谱结合OPLS-DA和人工神经网络可作为一种快速、准确的方法来评价根茎类药材的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d7/12073410/eab528518eee/molecules-30-01867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验