Wan Zicheng, Li Dongyang, Zhou Yang, Wang Tun, Zhu Benyin, Du Changhai, Li Yimin, Shu Chang
Department of Vascular Surgery, The Second Xiangya Hospital of Central South University Changsha China.
Angiopathy Institute of Central South University Changsha Hunan 410011 China.
RSC Adv. 2025 May 12;15(20):15639-15650. doi: 10.1039/d5ra01925g.
This study presents a preliminary investigation of porous nickel-titanium (NiTi) materials with controllable porosity fabricated through metal injection molding combined with the powder space-holder method (MIM-PSH). The thermosensitive hydrogel Pluronic F-127 was utilized as a drug carrier to load the anti-proliferative drug rapamycin, resulting in porous NiTi-hydrogel composite materials for controlled drug release. By tuning the NiTi matrix porosity (0%, 20%, and 40%), the system achieved precise modulation of drug loading capacity and release kinetics. Notably, the 40% porous NiTi composite exhibited a threefold increase in the drug-loading capacity and sustained release over 17 days. This hybrid design leveraged the thermoresponsive properties of the hydrogel and the tailored pore architecture to enable spatiotemporal control of rapamycin delivery, effectively inhibiting human aortic smooth muscle cell proliferation and mitigating vascular tissue hyperplasia. This study provides a foundational framework for the development of multifunctional biomaterial systems for vascular therapy.
本研究对通过金属注射成型结合粉末占位法(MIM-PSH)制备的具有可控孔隙率的多孔镍钛(NiTi)材料进行了初步研究。热敏水凝胶普朗尼克F-127被用作药物载体来负载抗增殖药物雷帕霉素,从而得到用于药物控释的多孔NiTi-水凝胶复合材料。通过调节NiTi基体孔隙率(0%、20%和40%),该系统实现了对药物负载量和释放动力学的精确调控。值得注意的是,40%孔隙率的NiTi复合材料的药物负载量增加了两倍,并能持续释放17天。这种混合设计利用了水凝胶的热响应特性和定制的孔隙结构,实现了雷帕霉素递送的时空控制,有效抑制了人主动脉平滑肌细胞增殖并减轻了血管组织增生。本研究为开发用于血管治疗的多功能生物材料系统提供了一个基础框架。