Suppr超能文献

通过物质时间预测纳米尺度受限聚合物的平衡动力学。

Predicting Equilibration Dynamics of Polymer Confined at the Nanoscale via Material Time.

作者信息

Chat Katarzyna, Sikora Ewa, Adrjanowicz Karolina

机构信息

Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland.

Institute of Physics, University of Silesia, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.

出版信息

J Phys Chem Lett. 2025 May 22;16(20):5076-5081. doi: 10.1021/acs.jpclett.5c00945. Epub 2025 May 14.

Abstract

Nonequilibrium phenomena are important in determining the dynamics of polymers confined at the nanoscale level. Growing experimental evidence demonstrates that nanoscale confinement giving rise to enhanced molecular mobility and deviation from the bulk behavior can be eliminated with time via very small density/volume changes that result from molecular rearrangements toward a more stable, i.e. less energetic, state. Remarkably, a similar effect is commonly observed upon physical aging of glasses. Here, we demonstrate that equilibration phenomena in nanopore confinement reveal the same fundamental features as the out-of-equilibrium response of (bulk) glasses subjected to various thermal histories. Following the concept of Narayanaswamy's single-parameter aging, we describe the equilibration of polymer dynamics at the nanoscale. The collected data show that the material-time concept is also valid in nanopore-confinement. Thus, it is possible to predict the confined polymer response to a temperature jump directly from the knowledge of a single relaxation curve.

摘要

非平衡现象在决定纳米尺度受限聚合物的动力学方面很重要。越来越多的实验证据表明,纳米尺度受限所导致的分子迁移率增强以及与本体行为的偏差,可通过分子重排向更稳定(即能量更低)状态所引起的非常小的密度/体积变化随时间消除。值得注意的是,在玻璃的物理老化过程中通常也会观察到类似的效应。在此,我们证明纳米孔受限中的平衡现象揭示了与经历各种热历史的(本体)玻璃的非平衡响应相同的基本特征。遵循纳拉亚纳斯瓦米单参数老化的概念,我们描述了纳米尺度下聚合物动力学的平衡。收集的数据表明,材料时间概念在纳米孔受限中也是有效的。因此,有可能直接从单一弛豫曲线的知识预测受限聚合物对温度跃变的响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ed/12105004/f489b2bca58e/jz5c00945_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验