Se Chamroeun, Champahom Thanapong, Jomnonkwao Sajjakaj, Boonyoo Tassana, Karoonsoontawong Ampol, Ratanavaraha Vatanavongs
Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
Department of Management, Faculty of Business Administration, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand.
Int J Inj Contr Saf Promot. 2025 Jun;32(2):303-323. doi: 10.1080/17457300.2025.2504975. Epub 2025 May 14.
This study pursues two complementary objectives: first, evaluating machine learning approaches for crash severity prediction to address methodological gaps in pickup truck crash analysis; second, systematically comparing single- versus multi-vehicle crash outcomes to understand distinct risk factors. Using Thailand crash data, the research compares Logistic Regression, Random Forest, XGBoost, and Deep Neural Network models, optimized with K-fold cross-validation and Bayesian Optimization, with SHAP employed for model interpretability. Results demonstrate that model performance varies significantly with injury classification schemes: XGBoost performed best for multiclass injury classification in both crash types, while Random Forest and Deep Neural Networks excelled in binary classification for single- and multi-vehicle crashes, respectively. The methodological analysis reveals the importance of both model selection and classification scheme in achieving optimal predictive performance. When applied to analyze crash factors, the models identified that both crash types are influenced by 4-lane roads, unlit roads, and barriers. Severity in single-vehicle crashes increases with fatigue, 2-lane roads, intra-province highways, and long holidays; in multi-vehicle crashes, severity is influenced by involvement of motorcycles or trucks, head-on collisions, and specific times of day. Factors reducing severity in single-vehicle crashes-such as concrete roads, defective vehicles, and hitting guardrails-do not significantly affect multi-vehicle crashes.
第一,评估用于碰撞严重程度预测的机器学习方法,以填补皮卡车碰撞分析中的方法空白;第二,系统比较单车与多车碰撞结果,以了解不同的风险因素。利用泰国的碰撞数据,该研究比较了逻辑回归、随机森林、XGBoost和深度神经网络模型,这些模型通过K折交叉验证和贝叶斯优化进行了优化,并采用SHAP进行模型可解释性分析。结果表明,模型性能会因损伤分类方案的不同而有显著差异:在两种碰撞类型中,XGBoost在多类损伤分类方面表现最佳,而随机森林和深度神经网络分别在单车和多车碰撞的二元分类中表现出色。方法学分析揭示了模型选择和分类方案在实现最佳预测性能方面的重要性。当应用于分析碰撞因素时,这些模型确定两种碰撞类型均受四车道道路、无照明道路和障碍物的影响。单车碰撞的严重程度会随着疲劳、双车道道路、省内高速公路和长假期而增加;在多车碰撞中,严重程度受摩托车或卡车的卷入、正面碰撞以及一天中的特定时间影响。降低单车碰撞严重程度的因素,如混凝土道路、有缺陷的车辆和撞上护栏,对多车碰撞没有显著影响。