Yang Zhenglin, Shao Xiangli, Wu Yuting, Roy Aritra, Garcia Elijah, Farrell Annie, Pradhan Shreestika, Guo Weijie, Gan Heather, Korkmaz Zeynep, Adams Emily, Lu Yi
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.
J Am Chem Soc. 2025 May 28;147(21):18074-18087. doi: 10.1021/jacs.5c03781. Epub 2025 May 14.
Potassium ions (K) within the tumor microenvironment, along with dysregulation of K channels, play critical roles in supporting cancer cell survival and preventing their elimination. Directly monitoring changes in K homeostasis within cancer cells is invaluable for understanding these processes. However, achieving high selectivity over other biological metal ions, a detection dynamic range that aligns with intracellular K levels, and broad accessibility to research laboratories remain technically challenging for current K imaging probes. In this study, we report the selection of the first K-specific RNA-cleaving DNAzyme and the development of a K-specific DNAzyme fluorescent sensor with exceptional selectivity, achieving over 1000-fold selectivity against Na and more than 100-fold selectivity over other major biologically relevant metal ions. This sensor has an apparent dissociation constant (105 mM) that is close to the intracellular level of K, and it has a broad detection range from 21 to 200 mM K. Using this tool, we reveal a progressive decline in intracellular K levels in breast cancer cells with more advanced progression states. Moreover, we demonstrate that elevated extracellular K levels interfere with the efficacy of anticancer compounds like ML133 and Amiodarone, suggesting an underappreciated role of microenvironmental K in chemoresistance. Notably, blocking the Kir2.1 channel activity restored treatment sensitivity, presenting a potential strategy to overcome chemoresistance in aggressive cancers. These findings underscore the role of K homeostasis in tumor progression and support further exploration of ion-channel-targeted cancer therapies.
肿瘤微环境中的钾离子(K)以及钾通道的失调,在支持癌细胞存活和防止其被清除方面发挥着关键作用。直接监测癌细胞内钾稳态的变化对于理解这些过程至关重要。然而,对于当前的钾成像探针而言,在对其他生物金属离子具有高选择性、检测动态范围与细胞内钾水平相匹配以及在研究实验室中广泛可用等方面,仍然存在技术挑战。在本研究中,我们报告了首个钾特异性RNA切割脱氧核酶的筛选以及一种具有卓越选择性的钾特异性脱氧核酶荧光传感器的开发,该传感器对钠的选择性超过1000倍,对其他主要生物相关金属离子的选择性超过100倍。该传感器的表观解离常数(105 mM)接近细胞内钾水平,并且其钾检测范围从21到200 mM很宽。使用这个工具,我们发现随着乳腺癌细胞进展状态的更高级,其细胞内钾水平逐渐下降。此外,我们证明细胞外钾水平升高会干扰像ML133和胺碘酮这样的抗癌化合物的疗效,这表明微环境钾在化疗耐药中存在未被充分认识的作用。值得注意的是,阻断Kir2.1通道活性可恢复治疗敏感性,这为克服侵袭性癌症的化疗耐药性提供了一种潜在策略。这些发现强调了钾稳态在肿瘤进展中的作用,并支持进一步探索以离子通道为靶点的癌症治疗方法。
Proc Natl Acad Sci U S A. 2015-5-12
Angew Chem Int Ed Engl. 2021-3-15
J Am Chem Soc. 2009-4-22
Angew Chem Int Ed Engl. 2025-1-10
Chemistry (Basel). 2023-9
Analyst. 2023-10-23
Nat Biotechnol. 2024-7
Front Oncol. 2023-1-10
Chem Biol Interact. 2022-11-1
Int J Mol Sci. 2022-7-30