Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China.
Department of Chemistry, University of Texas at Austin, 78712, Austin, TX, USA.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308086. doi: 10.1002/anie.202308086. Epub 2023 Aug 7.
DNA-based probes have gained significant attention as versatile tools for biochemical analysis, benefiting from their programmability and biocompatibility. However, most existing DNA-based probes rely on fluorescence as the signal output, which can be problematic due to issues like autofluorescence and scattering when applied in complex biological materials such as living cells or tissues. Herein, we report the development of bioluminescent nucleic acid (bioLUNA) sensors that offer laser excitation-independent and ratiometric imaging of the target in vivo. The system is based on computational modelling and mutagenesis investigations of a genetic fusion between circular permutated Nano-luciferase (NLuc) and HaloTag, enabling the conjugation of the protein with a DNAzyme. In the presence of Zn , the DNAzyme sensor releases the fluorophore-labelled strand, leading to a reduction in bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. Consequently, this process induces ratiometric changes in the bioluminescent signal. We demonstrated that this bioLUNA sensor enabled imaging of both exogenous Zn in vivo and endogenous Zn efflux in normal epithelial prostate and prostate tumors. This work expands the DNAzyme sensors to using bioluminescence and thus has enriched the toolbox of nucleic acid sensors for a broad range of biomedical applications.
基于 DNA 的探针作为生化分析的多功能工具引起了广泛关注,其可编程性和生物相容性使其受益。然而,大多数现有的基于 DNA 的探针依赖于荧光作为信号输出,当应用于复杂的生物材料(如活细胞或组织)时,由于自发荧光和散射等问题,这可能会出现问题。在此,我们报告了生物发光核酸(bioLUNA)传感器的开发,该传感器提供了在体内对目标进行激光激发独立和比率成像的能力。该系统基于对环形排列的 Nano-luciferase(NLuc)和 HaloTag 之间遗传融合的计算模型和诱变研究,使蛋白质与 DNA 酶连接。在 Zn 的存在下,DNA 酶传感器释放出标记荧光团的链,导致荧光酶和荧光团之间的生物发光共振能量转移(BRET)减少。因此,该过程诱导生物发光信号的比率变化。我们证明,这种 bioLUNA 传感器能够对体内的外源 Zn 和正常上皮前列腺和前列腺肿瘤中的内源性 Zn 流出进行成像。这项工作将 DNA 酶传感器扩展到使用生物发光,从而丰富了核酸传感器在广泛的生物医学应用中的工具包。