文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于大津-双密度(IOtsu-Dd)算法的路面裂缝识别方法

Pavement crack identification method based on IOtsu-Dd algorithm.

作者信息

Yang Yang, Wang Lin, Xiong Qinghua

机构信息

School of Road and Bridge Engineering, Guangxi Transport Vocational and Technical College, Nanning, China.

Hebei Expressway Hangang Expressway Co., Ltd., Cangzhou, China.

出版信息

PLoS One. 2025 May 14;20(5):e0322662. doi: 10.1371/journal.pone.0322662. eCollection 2025.


DOI:10.1371/journal.pone.0322662
PMID:40367074
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12077713/
Abstract

Rapid identification of highway cracks is greatly significant for highway maintenance. In recent years, the use of unmanned aerial vehicles to collect images of road cracks for automatic recognition has become a topic of concern for many researchers. Based on this, to raise the accuracy and efficiency of crack recognition, a road crack recognition method based on unmanned aerial vehicle images and improved Otsu method is developed. Firstly, certain processing techniques are applied to the images captured by the unmanned aerial vehicle, such as grayscale and equalization, to reduce computational complexity and facilitate subsequent identification of image cracks. Subsequently, to improve recognition accuracy, the image is segmented and the Otsu method is introduced and improved. Finally, a pavement crack recognition model is constructed using damage density, achieving the extraction and recognition of pavement crack features from images. The experiment findings show that the raised recognition model has an average accuracy of 98.2%, a recall rate of 0.75, and an F1 score of 0.85 in crack recognition of unmanned aerial vehicle captured images. This denotes that the raised recognition model has strong effectiveness and high recognition accuracy, and the method can effectively recognize road cracks based on unmanned aerial vehicle images.

摘要

快速识别公路裂缝对公路养护具有重要意义。近年来,利用无人机采集道路裂缝图像进行自动识别已成为众多研究人员关注的课题。基于此,为提高裂缝识别的准确率和效率,开发了一种基于无人机图像和改进大津法的道路裂缝识别方法。首先,对无人机采集的图像应用灰度化、均衡化等处理技术,以降低计算复杂度,便于后续图像裂缝的识别。随后,为提高识别准确率,对图像进行分割,并引入和改进大津法。最后,利用损伤密度构建路面裂缝识别模型,实现从图像中提取和识别路面裂缝特征。实验结果表明,所提出的识别模型在无人机采集图像的裂缝识别中,平均准确率为98.2%,召回率为0.75,F1分数为0.85。这表明所提出的识别模型具有较强的有效性和较高的识别准确率,该方法能够基于无人机图像有效地识别道路裂缝。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/4c775f0e7cde/pone.0322662.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/d5214dc68fb4/pone.0322662.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/a7ff46779e78/pone.0322662.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/e63f6a17000a/pone.0322662.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/951ead994eb9/pone.0322662.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/5dfc4b34fab3/pone.0322662.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/1d2a761c3213/pone.0322662.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/17886982652d/pone.0322662.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/b084e1ebed23/pone.0322662.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/ad6695a146f6/pone.0322662.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/f1cc398ba2ea/pone.0322662.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/cec69e8cffef/pone.0322662.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/ee2a91ab139b/pone.0322662.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/d626376dca50/pone.0322662.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/6f3706ced4b3/pone.0322662.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/4c775f0e7cde/pone.0322662.g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/d5214dc68fb4/pone.0322662.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/a7ff46779e78/pone.0322662.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/e63f6a17000a/pone.0322662.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/951ead994eb9/pone.0322662.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/5dfc4b34fab3/pone.0322662.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/1d2a761c3213/pone.0322662.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/17886982652d/pone.0322662.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/b084e1ebed23/pone.0322662.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/ad6695a146f6/pone.0322662.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/f1cc398ba2ea/pone.0322662.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/cec69e8cffef/pone.0322662.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/ee2a91ab139b/pone.0322662.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/d626376dca50/pone.0322662.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/6f3706ced4b3/pone.0322662.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/616d/12077713/4c775f0e7cde/pone.0322662.g015.jpg

相似文献

[1]
Pavement crack identification method based on IOtsu-Dd algorithm.

PLoS One. 2025-5-14

[2]
Crack Segmentation Extraction and Parameter Calculation of Asphalt Pavement Based on Image Processing.

Sensors (Basel). 2023-11-14

[3]
Pavement Cracks Segmentation Algorithm Based on Conditional Generative Adversarial Network.

Sensors (Basel). 2022-11-3

[4]
A Novel Approach for UAV Image Crack Detection.

Sensors (Basel). 2022-4-26

[5]
HighRPD: A high-altitude drone dataset of road pavement distress.

Data Brief. 2025-2-7

[6]
SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.

Sensors (Basel). 2022-4-3

[7]
Automated highway pavement crack recognition under complex environment.

Heliyon. 2024-2-15

[8]
[Intelligent identification of livestock, a source of infection, based on deep learning of unmanned aerial vehicle images].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2023-5-10

[9]
ASG-YOLOv5: Improved YOLOv5 unmanned aerial vehicle remote sensing aerial images scenario for small object detection based on attention and spatial gating.

PLoS One. 2024

[10]
CT image crack segmentation method based on linear feature enhancement.

J Xray Sci Technol. 2022

本文引用的文献

[1]
Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images.

Neural Comput Appl. 2023

[2]
Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation.

J Xray Sci Technol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索