Department of Computer Science, Forman Christian College University, Lahore, Pakistan.
Department of Computer Science, National University of Computer and Emerging Science, Lahore, Pakistan.
J Xray Sci Technol. 2022;30(6):1169-1184. doi: 10.3233/XST-221245.
BACKGROUND: Medical image processing has gained much attention in developing computer-aided diagnosis (CAD) of diseases. CAD systems require deep understanding of X-rays, MRIs, CT scans and other medical images. The segmentation of the region of interest (ROI) from those images is one of the most crucial tasks. OBJECTIVE: Although active contour model (ACM) is a popular method to segment ROIs in medical images, the final segmentation results highly depend on the initial placement of the contour. In order to overcome this challenge, the objective of this study is to investigate feasibility of developing a fully automated initialization process that can be optimally used in ACM to more effectively segment ROIs. METHODS: In this study, a fully automated initialization algorithm namely, an adaptive Otsu-based initialization (AOI) method is proposed. Using this proposed method, an initial contour is produced and further refined by the ACM to produce accurate segmentation. For evaluation of the proposed algorithm, the ISIC-2017 Skin Lesion dataset is used due to its challenging complexities. RESULTS: Four different supervised performance evaluation metrics are employed to measure the accuracy and robustness of the proposed algorithm. Using this AOI algorithm, the ACM significantly (p≤0.05) outperforms Otsu thresholding method with 0.88 Dice Score Coefficients (DSC) and 0.79 Jaccard Index (JI) and computational complexity of 0(mn). CONCLUSIONS: After comparing proposed method with other state-of-the-art methods, our study demonstrates that the proposed methods is superior to other skin lesion segmentation methods, and it requires no training time, which also makes the new method more efficient than other deep learning and machine learning methods.
背景:医学图像处理在开发疾病的计算机辅助诊断(CAD)方面受到了广泛关注。CAD 系统需要深入理解 X 光、MRI、CT 扫描和其他医学图像。从这些图像中分割感兴趣区域(ROI)是最关键的任务之一。
目的:尽管主动轮廓模型(ACM)是一种用于分割医学图像 ROI 的流行方法,但最终分割结果高度依赖于轮廓的初始位置。为了克服这一挑战,本研究旨在探讨开发完全自动化初始化过程的可行性,该过程可在 ACM 中得到最佳利用,以更有效地分割 ROI。
方法:在这项研究中,提出了一种完全自动化的初始化算法,即基于自适应 Otsu 的初始化(AOI)方法。使用这种新方法,初始轮廓由 ACM 生成,并进一步细化,以实现准确的分割。为了评估所提出的算法,由于其具有挑战性的复杂性,因此使用了 ISIC-2017 皮肤病变数据集。
结果:采用了四种不同的监督性能评估指标来衡量所提出算法的准确性和鲁棒性。使用 AOI 算法,ACM 显著(p≤0.05)优于 Otsu 阈值方法,其 Dice 分数系数(DSC)为 0.88,Jaccard 指数(JI)为 0.79,计算复杂度为 0(mn)。
结论:在将所提出的方法与其他最先进的方法进行比较后,我们的研究表明,所提出的方法优于其他皮肤病变分割方法,并且不需要训练时间,这也使得新方法比其他深度学习和机器学习方法更高效。
Comput Methods Programs Biomed. 2019-7-8
Biomed Eng Online. 2013-5-28
Comput Biol Med. 2016-5-1
PLoS One. 2025-5-14
Diagnostics (Basel). 2023-8-15
Diagnostics (Basel). 2023-2-20