文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

应用基于自适应 Otsu 的初始化算法优化用于皮肤病变分割的主动轮廓模型。

Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation.

机构信息

Department of Computer Science, Forman Christian College University, Lahore, Pakistan.

Department of Computer Science, National University of Computer and Emerging Science, Lahore, Pakistan.

出版信息

J Xray Sci Technol. 2022;30(6):1169-1184. doi: 10.3233/XST-221245.


DOI:10.3233/XST-221245
PMID:36093674
Abstract

BACKGROUND: Medical image processing has gained much attention in developing computer-aided diagnosis (CAD) of diseases. CAD systems require deep understanding of X-rays, MRIs, CT scans and other medical images. The segmentation of the region of interest (ROI) from those images is one of the most crucial tasks. OBJECTIVE: Although active contour model (ACM) is a popular method to segment ROIs in medical images, the final segmentation results highly depend on the initial placement of the contour. In order to overcome this challenge, the objective of this study is to investigate feasibility of developing a fully automated initialization process that can be optimally used in ACM to more effectively segment ROIs. METHODS: In this study, a fully automated initialization algorithm namely, an adaptive Otsu-based initialization (AOI) method is proposed. Using this proposed method, an initial contour is produced and further refined by the ACM to produce accurate segmentation. For evaluation of the proposed algorithm, the ISIC-2017 Skin Lesion dataset is used due to its challenging complexities. RESULTS: Four different supervised performance evaluation metrics are employed to measure the accuracy and robustness of the proposed algorithm. Using this AOI algorithm, the ACM significantly (p≤0.05) outperforms Otsu thresholding method with 0.88 Dice Score Coefficients (DSC) and 0.79 Jaccard Index (JI) and computational complexity of 0(mn). CONCLUSIONS: After comparing proposed method with other state-of-the-art methods, our study demonstrates that the proposed methods is superior to other skin lesion segmentation methods, and it requires no training time, which also makes the new method more efficient than other deep learning and machine learning methods.

摘要

背景:医学图像处理在开发疾病的计算机辅助诊断(CAD)方面受到了广泛关注。CAD 系统需要深入理解 X 光、MRI、CT 扫描和其他医学图像。从这些图像中分割感兴趣区域(ROI)是最关键的任务之一。

目的:尽管主动轮廓模型(ACM)是一种用于分割医学图像 ROI 的流行方法,但最终分割结果高度依赖于轮廓的初始位置。为了克服这一挑战,本研究旨在探讨开发完全自动化初始化过程的可行性,该过程可在 ACM 中得到最佳利用,以更有效地分割 ROI。

方法:在这项研究中,提出了一种完全自动化的初始化算法,即基于自适应 Otsu 的初始化(AOI)方法。使用这种新方法,初始轮廓由 ACM 生成,并进一步细化,以实现准确的分割。为了评估所提出的算法,由于其具有挑战性的复杂性,因此使用了 ISIC-2017 皮肤病变数据集。

结果:采用了四种不同的监督性能评估指标来衡量所提出算法的准确性和鲁棒性。使用 AOI 算法,ACM 显著(p≤0.05)优于 Otsu 阈值方法,其 Dice 分数系数(DSC)为 0.88,Jaccard 指数(JI)为 0.79,计算复杂度为 0(mn)。

结论:在将所提出的方法与其他最先进的方法进行比较后,我们的研究表明,所提出的方法优于其他皮肤病变分割方法,并且不需要训练时间,这也使得新方法比其他深度学习和机器学习方法更高效。

相似文献

[1]
Applying an adaptive Otsu-based initialization algorithm to optimize active contour models for skin lesion segmentation.

J Xray Sci Technol. 2022

[2]
Automatic segmentation of medical images using a novel Harris Hawk optimization method and an active contour model.

J Xray Sci Technol. 2021

[3]
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.

Comput Methods Programs Biomed. 2019-7-8

[4]
Automatic liver segmentation by integrating fully convolutional networks into active contour models.

Med Phys. 2019-8-16

[5]
An improved level set method for vertebra CT image segmentation.

Biomed Eng Online. 2013-5-28

[6]
Automatic segmentation of vertebral contours from CT images using fuzzy corners.

Comput Biol Med. 2016-5-1

[7]
Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour.

Med Phys. 2023-4

[8]
A fully automatic segmentation algorithm for CT lung images based on random forest.

Med Phys. 2019-12-29

[9]
Melanoma segmentation using deep learning with test-time augmentations and conditional random fields.

Sci Rep. 2022-3-10

[10]
An active contour model for medical image segmentation with application to brain CT image.

Med Phys. 2013-2

引用本文的文献

[1]
Pavement crack identification method based on IOtsu-Dd algorithm.

PLoS One. 2025-5-14

[2]
Skin Lesion Segmentation Using an Ensemble of Different Image Processing Methods.

Diagnostics (Basel). 2023-8-15

[3]
Alzheimer Disease Classification through Transfer Learning Approach.

Diagnostics (Basel). 2023-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索