Srain Benjamín, Flores Edgart, Valdés Jorge, Camaño Andrés
Laboratorio de Sedimentología y Paleoambientes (LASPAL), Instituto de Ciencias Naturales A. von Humboldt, Facultad de Ciencias del Mar y de Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile.
Sistemas Socio Ecológicos SpA, Concepción, Chile.
PLoS One. 2025 May 14;20(5):e0306674. doi: 10.1371/journal.pone.0306674. eCollection 2025.
The Chilean upwelling bays are highly productive ecosystems shaped by their interactions with the open ocean. Although significant knowledge exists regarding their hydrodynamic and ecological processes, the spatial dynamics of trophic transfer and heterotrophic resynthesis of organic matter remain insufficiently understood. To address these knowledge gaps, we conducted a compound-specific isotope analysis of amino acids (CSIAA) on suspended and sinking particulate organic matter from Mejillones and Antofagasta bays, two oceanographic environments characterized by contrasting hydrodynamic conditions and topographic orientations. In Mejillones Bay, the CSIAA trophic positions for metazoan (1.7 ± 0.5) and protozoan (2.3 ± 0.3) were significantly higher compared to those in Antofagasta Bay (metazoans: 1.3 ± 0.6; protozoans: 1.5 ± 0.3), highlighting protozoans as primary trophic vectors. MixSIAR analysis indicated that phytoplankton is a key source of particulate organic matter in both bays; however, Mejillones Bay exhibited a greater proportion of microbially degraded organic matter. Enhanced heterotrophic resynthesis in Mejillones Bay (ΣV: 1.9-2.5) was associated with lower oxygen levels, increased concentrations of NO₂ ⁻ , and heightened stratification of the water column. Additionally, depth-dependent variations in δ15N for phenylalanine and threonine indicated a greater solubilization of particles, which contributed to a reduction in the export of particulate organic matter (averaging 9 ± 2 mg C/m²/d). These findings underscore the critical role of the intricate interactions between the bay's topographic features and the physical and biological processes that ultimately influence the cycling trajectories of particulate organic matter in upwelling bays.
智利的上升流海湾是与公海相互作用形成的高产生态系统。尽管人们对其水动力和生态过程已有相当多的了解,但营养物质转移的空间动态以及有机物的异养再合成仍未得到充分认识。为填补这些知识空白,我们对梅希约内斯湾和安托法加斯塔湾悬浮和沉降的颗粒有机物进行了氨基酸化合物特异性同位素分析(CSIAA),这两个海洋环境具有截然不同的水动力条件和地形方向。在梅希约内斯湾,后生动物(1.7±0.5)和原生动物(2.3±0.3)的CSIAA营养级显著高于安托法加斯塔湾(后生动物:1.3±0.6;原生动物:1.5±0.3),突出了原生动物作为主要营养载体的地位。MixSIAR分析表明,浮游植物是两个海湾颗粒有机物的关键来源;然而,梅希约内斯湾微生物降解有机物的比例更高。梅希约内斯湾增强的异养再合成(ΣV:1.9 - 2.5)与较低的氧含量、NO₂⁻浓度增加以及水柱分层加剧有关。此外,苯丙氨酸和苏氨酸的δ15N随深度的变化表明颗粒的溶解增加,这导致颗粒有机物的输出减少(平均9±2 mg C/m²/d)。这些发现强调了海湾地形特征与物理和生物过程之间复杂相互作用的关键作用,这些相互作用最终影响上升流海湾中颗粒有机物的循环轨迹。