Suppr超能文献

使用新一代贝叶斯示踪剂混合模型分析混合系统。

Analyzing mixing systems using a new generation of Bayesian tracer mixing models.

作者信息

Stock Brian C, Jackson Andrew L, Ward Eric J, Parnell Andrew C, Phillips Donald L, Semmens Brice X

机构信息

Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA.

Department of Zoology, School of Natural Sciences, University of Dublin, Trinity College, Dublin, Ireland.

出版信息

PeerJ. 2018 Jun 21;6:e5096. doi: 10.7717/peerj.5096. eCollection 2018.

Abstract

The ongoing evolution of tracer mixing models has resulted in a confusing array of software tools that differ in terms of data inputs, model assumptions, and associated analytic products. Here we introduce MixSIAR, an inclusive, rich, and flexible Bayesian tracer (e.g., stable isotope) mixing model framework implemented as an open-source R package. Using MixSIAR as a foundation, we provide guidance for the implementation of mixing model analyses. We begin by outlining the practical differences between mixture data error structure formulations and relate these error structures to common mixing model study designs in ecology. Because Bayesian mixing models afford the option to specify informative priors on source proportion contributions, we outline methods for establishing prior distributions and discuss the influence of prior specification on model outputs. We also discuss the options available for source data inputs (raw data versus summary statistics) and provide guidance for combining sources. We then describe a key advantage of MixSIAR over previous mixing model software-the ability to include fixed and random effects as covariates explaining variability in mixture proportions and calculate relative support for multiple models via information criteria. We present a case study of diet partitioning to demonstrate the power of this approach. Finally, we conclude with a discussion of limitations to mixing model applications. Through MixSIAR, we have consolidated the disparate array of mixing model tools into a single platform, diversified the set of available parameterizations, and provided developers a platform upon which to continue improving mixing model analyses in the future.

摘要

示踪剂混合模型的不断发展导致了一系列令人困惑的软件工具,这些工具在数据输入、模型假设和相关分析产品方面存在差异。在此,我们介绍MixSIAR,这是一个包容性强、功能丰富且灵活的贝叶斯示踪剂(如稳定同位素)混合模型框架,以开源R包的形式实现。以MixSIAR为基础,我们为混合模型分析的实施提供指导。我们首先概述混合数据误差结构公式之间的实际差异,并将这些误差结构与生态学中常见的混合模型研究设计相关联。由于贝叶斯混合模型允许在源比例贡献上指定信息先验,我们概述了建立先验分布的方法,并讨论了先验指定对模型输出的影响。我们还讨论了源数据输入(原始数据与汇总统计数据)的可用选项,并为组合源提供指导。然后,我们描述了MixSIAR相对于以前的混合模型软件的一个关键优势——能够将固定效应和随机效应作为协变量纳入,以解释混合比例的变异性,并通过信息准则计算多个模型的相对支持度。我们展示了一个饮食分配的案例研究,以证明这种方法的强大之处。最后,我们讨论了混合模型应用的局限性。通过MixSIAR,我们将各种不同的混合模型工具整合到一个单一平台上,使可用参数化方法多样化,并为开发人员提供了一个平台,以便他们在未来继续改进混合模型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6048/6015753/cb963ec1496f/peerj-06-5096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验