Suppr超能文献

基于患病率的年龄别发病率的最大似然估计

Maximum likelihood estimation of age-specific incidence rate from prevalence.

作者信息

Voß Sabrina, Hoyer Annika, Brinks Ralph

机构信息

Chair for Medical Biometry and Epidemiology, Faculty of Health/School of Medicine, Witten/Herdecke University, Witten, Germany.

Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Bielefeld, Germany.

出版信息

PLoS One. 2025 May 14;20(5):e0321924. doi: 10.1371/journal.pone.0321924. eCollection 2025.

Abstract

Usually, age-specific incidence rates of chronic diseases are estimated from longitudinal studies that follow participants over time and record incident cases. However, these studies can be cost- and time-expensive and are prone to loss to follow up. An alternative method allows incidence estimation based on aggregated data from (cross-sectional) prevalence and mortality studies using relations between incidence, prevalence and mortality described by the illness-death model and a related partial differential equation. Currently, adequate options for the assessment of the accuracy of the achieved incidence estimates are missing and bootstrap resampling methods are used instead. Therefore, we developed novel ways to estimate incidence rates based on the maximum likelihood principle with corresponding confidence intervals. Historical data about breathlessness in British coal miners and diabetes in Germany are used to illustrate the applicability of this method in scenarios with non-differential and differential mortality. We have two scenarios of available data in the case of differential mortality: mortality of diseased and all-cause mortality, or all-cause mortality and mortality rate ratio. Our results show that estimation of incidence rates and corresponding confidence intervals of chronic conditions based on aggregated data with the maximum likelihood method using a binomial likelihood function is possible and can replace resampling techniques.

摘要

通常,慢性病的年龄特异性发病率是通过纵向研究估计得出的,这些研究对参与者进行长期跟踪并记录新发病例。然而,这些研究可能成本高昂且耗时,并且容易出现失访情况。另一种方法是基于(横断面)患病率和死亡率研究的汇总数据,利用疾病-死亡模型及相关偏微分方程所描述的发病率、患病率和死亡率之间的关系来估计发病率。目前,缺乏评估所得发病率估计准确性的适当方法,因此使用了自助重采样方法。所以,我们基于最大似然原理开发了新的发病率估计方法及相应的置信区间。以英国煤矿工人的呼吸困难情况和德国的糖尿病情况的历史数据为例,说明该方法在非差异死亡率和差异死亡率情况下的适用性。在差异死亡率的情况下,我们有两种可用数据场景:患病死亡率和全因死亡率,或全因死亡率和死亡率比。我们的结果表明,使用二项式似然函数,基于汇总数据通过最大似然法估计慢性病的发病率及相应置信区间是可行的,并且可以替代重采样技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8585/12077784/1655e4ce25fc/pone.0321924.g001.jpg

相似文献

1
Maximum likelihood estimation of age-specific incidence rate from prevalence.基于患病率的年龄别发病率的最大似然估计
PLoS One. 2025 May 14;20(5):e0321924. doi: 10.1371/journal.pone.0321924. eCollection 2025.
4
Modeling the temporal prevalence peak drift of chronic diseases.模拟慢性病的时间流行高峰漂移。
BMC Med Res Methodol. 2025 Mar 7;25(1):65. doi: 10.1186/s12874-025-02517-1.
10
Illness-death model: statistical perspective and differential equations.疾病-死亡模型:统计学视角与微分方程
Lifetime Data Anal. 2018 Oct;24(4):743-754. doi: 10.1007/s10985-018-9419-6. Epub 2018 Jan 27.

本文引用的文献

6
Illness-death model: statistical perspective and differential equations.疾病-死亡模型:统计学视角与微分方程
Lifetime Data Anal. 2018 Oct;24(4):743-754. doi: 10.1007/s10985-018-9419-6. Epub 2018 Jan 27.
7
The Prevalence and Incidence of Diabetes in Germany.德国糖尿病的患病率和发病率。
Dtsch Arztebl Int. 2016 Mar 18;113(11):177-82. doi: 10.3238/arztebl.2016.0177.
8
Longitudinal studies.纵向研究。
J Thorac Dis. 2015 Nov;7(11):E537-40. doi: 10.3978/j.issn.2072-1439.2015.10.63.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验