Ng Huah Shin, Woodman Richard, Veronese Nicola, Pilotto Alberto, Mangoni Arduino A
Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia; SA Pharmacy, SA Health, Adelaide, Australia.
Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Discipline of Biostatistics, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
Heart Rhythm. 2025 May 12. doi: 10.1016/j.hrthm.2025.05.012.
The multidimensional prognostic index (MPI), an established tool to predict adverse outcomes, classifies frailty using an aggregate-weighted tripartite scoring system based on 8 domains (low, moderate, or severe risk). However, this approach may fail to capture specific patient phenotypes that can be characterized by separate MPI domains and for whom health outcome risk also differs.
We sought to identify latent patient phenotypes based on MPI domain data and to determine their association with mortality in older patients with atrial fibrillation (AF).
Using data from the European Study of Older Subjects With Atrial Fibrillation, we used latent class analysis to identify phenotypes using individual MPI domains and Cox regression models to examine their association with 12-month mortality.
Four MPI domain phenotypes were identified in 2019 patients with AF (mean age 82.9 years [standard deviation, 7.5]; 57% females): phenotype 1 (relatively fit, few comorbidities; n = 672, 33%), phenotype 2 (functionally impaired, polypharmacy, comorbidities; n = 685, 34%), phenotype 3 (multidimensional frailty, comorbidities; n = 161, 8%), and phenotype 4 (relatively fit, polypharmacy, comorbidities; n = 501, 25%). Compared with phenotype 1, 12-month mortality was higher in phenotype 3 (adjusted hazard ratio [aHR], 4.68; 95% confidence interval [CI], 3.41-6.43), phenotype 2 (aHR, 1.98; 95% CI, 1.53-2.57), and phenotype 4 (aHR, 1.44; 95% CI, 1.07-1.94).
In a cohort of older patients with AF, latent class analysis identified 4 MPI domain phenotypes with different risks of mortality. Pending confirmatory studies, the identified subgroups might allow more targeted interventions to improve outcomes in this population.
多维预后指数(MPI)是一种用于预测不良结局的既定工具,它使用基于8个领域的综合加权三方评分系统(低风险、中度风险或高风险)对衰弱进行分类。然而,这种方法可能无法捕捉到特定的患者表型,这些表型可以通过单独的MPI领域来表征,并且其健康结局风险也有所不同。
我们试图基于MPI领域数据识别潜在的患者表型,并确定它们与老年房颤(AF)患者死亡率的关联。
利用欧洲老年房颤患者研究的数据,我们使用潜在类别分析通过个体MPI领域识别表型,并使用Cox回归模型检查它们与12个月死亡率的关联。
在2019例房颤患者中识别出4种MPI领域表型(平均年龄82.9岁[标准差7.5];57%为女性):表型1(相对健康,合并症少;n = 672,33%),表型2(功能受损,多种药物治疗,合并症;n = 685,34%),表型3(多维衰弱,合并症;n = 161,8%),以及表型4(相对健康,多种药物治疗,合并症;n = 501,25%)。与表型1相比,表型3的12个月死亡率更高(调整后风险比[aHR],4.68;95%置信区间[CI],3.41 - 6.43),表型2(aHR,1.98;95% CI,1.53 - 2.57),以及表型4(aHR,1.44;95% CI,1.07 - 1.94)。
在一组老年房颤患者中,潜在类别分析识别出4种具有不同死亡风险的MPI领域表型。在进行验证性研究之前,识别出的亚组可能允许采取更有针对性的干预措施来改善该人群的结局。