Chen Jing, Vavricka Christopher J, Wei Shuangshuang, Nakazawa Yasumoto, Matsumoto Yuri, Chen Huaqing, Tang Yu, Liang Jing, Chen Jiukai, Huang Yaneng, Noguchi Keiichi, Hasunuma Tomohisa, Guan Huai, Li Jianyong, Liao Chenghong, Han Qian
Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China.
Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
Nat Commun. 2025 May 14;16(1):4486. doi: 10.1038/s41467-025-59723-0.
3,4-Dihydroxyphenylacetaldehyde synthase (DHPAAS) catalyzes oxygen-dependent conversion of 3,4-dihydroxyphenylalanine (dopa) to 3,4-dihydroxyphenylacetaldehyde (DHPAA), a likely cross-linking agent precursor of the insect cuticle. In the current study, extensive in vivo experiments in Aedes aegypti show that DHPAAS is essential for abdominal integrity, egg development and cuticle structure formation. Solid-state C nuclear magnetic resonance analysis of the Ae. aegypti cuticle molecular structure shows chemical shifts of 115 to 145 ppm, suggesting the presence of catechols derived from DHPAA. The crystal structure of insect DHPAAS was then solved, revealing an active site that is divergent from that of the homologous enzyme dopa decarboxylase. In the DHPAAS crystal structure, stabilization of the flexible 320-350 region accompanies the positioning of the 350-360 loop relatively close to the catalytic Asn192 residue while the conserved active site residue Phe103 adopts an open conformation away from the active center; these distinct features participate in the formation of a specific hydrophobic tunnel which potentially facilitates delivery of oxygen to pyridoxal 5'-phosphate in the conversion of dopa to DHPAA.
3,4-二羟基苯乙醛合酶(DHPAAS)催化3,4-二羟基苯丙氨酸(多巴)依赖氧气转化为3,4-二羟基苯乙醛(DHPAA),DHPAA可能是昆虫表皮交联剂的前体。在当前研究中,对埃及伊蚊进行的大量体内实验表明,DHPAAS对腹部完整性、卵子发育和表皮结构形成至关重要。对埃及伊蚊表皮分子结构的固态碳核磁共振分析显示化学位移在115至145 ppm之间,表明存在源自DHPAA的儿茶酚。随后解析了昆虫DHPAAS的晶体结构,揭示了一个与同源酶多巴脱羧酶不同的活性位点。在DHPAAS晶体结构中,柔性的320 - 350区域的稳定伴随着350 - 360环相对靠近催化性Asn192残基的定位,而保守的活性位点残基Phe103采取远离活性中心的开放构象;这些独特特征参与形成一个特定的疏水通道,这可能有助于在多巴转化为DHPAA的过程中将氧气传递给磷酸吡哆醛。