Wu Han, Fu Zhanzhao, Chang Jiangwei, Hu Zhiang, Li Jian, Wang Siyang, Yu Jingkun, Yong Xue, Waterhouse Geoffrey I N, Tang Zhiyong, Chang Junbiao, Lu Siyu
College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China.
State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.
Nat Commun. 2025 May 14;16(1):4482. doi: 10.1038/s41467-025-59472-0.
Designing efficient acidic oxygen evolution catalysts for proton exchange membrane water electrolyzers is challenging due to a trade-off between activity and stability. In this work, we construct high-density microcrystalline grain boundaries (GBs) with V-dopant in RuO matrix (GB-V-RuO). Our theoretical and experimental results indicate this is a highly active and acid-resistant OER catalyst. Specifically, the GB-V-RuO requires low overpotentials of 159, 222, and 300 mV to reach 10, 100, and 1500 mA cm in 0.5 M HSO, respectively. Operando EIS, ATR-SEIRAS FTIR and DEMS measurements reveal the importance of GBs in stabilizing lattice oxygen and thus inhibiting the lattice oxygen mediated OER pathway. As a result, the adsorbate evolution mechanism pathway becomes dominant, even at high current densities. Density functional theory analyses confirm that GBs can stabilize V dopant and that the synergy between them modulates the electronic structure of RuO, thus optimizing the adsorption of OER intermediate species and enhancing electrocatalyst stability. Our work demonstrates a rational strategy for overcoming the traditional activity/stability dilemma, offering good prospects of developing high-performance acidic OER catalysts.
由于活性和稳定性之间的权衡,为质子交换膜水电解槽设计高效的酸性析氧催化剂具有挑战性。在这项工作中,我们在RuO基体中构建了具有V掺杂的高密度微晶晶界(GB-V-RuO)。我们的理论和实验结果表明,这是一种高活性且耐酸的析氧反应催化剂。具体而言,GB-V-RuO在0.5 M HSO中分别达到10、100和1500 mA cm时所需的过电位低至159、222和300 mV。原位电化学阻抗谱(EIS)、衰减全反射表面增强红外吸收光谱(ATR-SEIRAS FTIR)和差分电化学质谱(DEMS)测量揭示了晶界在稳定晶格氧从而抑制晶格氧介导的析氧反应途径中的重要性。因此,即使在高电流密度下,吸附质演化机制途径也占主导地位。密度泛函理论分析证实,晶界可以稳定V掺杂剂,并且它们之间的协同作用调节了RuO的电子结构,从而优化了析氧反应中间物种的吸附并提高了电催化剂的稳定性。我们的工作展示了一种克服传统活性/稳定性困境的合理策略,为开发高性能酸性析氧催化剂提供了良好的前景。