Suppr超能文献

用于高效量子点发光二极管的原位氧化锌重结晶

Operando ZnO recrystallization for efficient quantum-dot light-emitting diodes.

作者信息

Wang Song, Liu Shihao, Wang Ting, Bai Jialin, Peng Jingyu, Zhang Hanzhuang, Xie Wenfa, Ji Wenyu

机构信息

Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China.

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.

出版信息

Light Sci Appl. 2025 May 15;14(1):196. doi: 10.1038/s41377-025-01867-1.

Abstract

ZnO nanoparticles (NPs) play a crucial role in advancing quantum-dot light-emitting diodes (QLEDs) because of their excellent electron transport properties. While the conductivity of ZnO is determined by both the density and mobility of charge carriers, a previously overlooked problem is that excessive carrier density in ZnO can lead to nonradiative Auger recombination at the quantum-dot/ZnO interface. An ideal electron transport layer should possess both high mobility and low carrier density. Here, we achieve such transport properties in ZnO NP films through operando recrystallization, a process triggered by the diffusion of Al ions from the cathode under acidic conditions. This diffusion induces the coalescence of neighboring ZnO NPs, forming defect-passivated, long-range ZnO crystals. When used as the electron transport layer in QLEDs, recrystallized ZnO NPs enhance the external quantum efficiency from 17.2% to 33.7% compared with devices with conventional ZnO electron transport layers. These findings offer valuable insights into the development of charge transport materials for high-performance optoelectronic devices.

摘要

氧化锌纳米颗粒(NPs)因其优异的电子传输特性,在推进量子点发光二极管(QLEDs)发展中起着至关重要的作用。虽然氧化锌的导电性由电荷载流子的密度和迁移率共同决定,但一个此前被忽视的问题是,氧化锌中过高的载流子密度会导致量子点/氧化锌界面处的非辐射俄歇复合。理想的电子传输层应兼具高迁移率和低载流子密度。在此,我们通过原位重结晶在氧化锌NP薄膜中实现了这样的传输特性,这一过程由酸性条件下铝离子从阴极扩散引发。这种扩散促使相邻的氧化锌NPs聚结,形成缺陷钝化的长程氧化锌晶体。当用作QLEDs的电子传输层时,与具有传统氧化锌电子传输层的器件相比,重结晶的氧化锌NPs将外部量子效率从17.2%提高到了33.7%。这些发现为高性能光电器件电荷传输材料的开发提供了宝贵的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e6/12078497/1d36f84c8284/41377_2025_1867_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验