Qian Jiasheng, Lin Shuang, Chen Zhi-Hao, Huang Jiawu, Zhang Wenjin, Li Qingjiang, Sun Tian-Yu, Wang Honggen
State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
Nat Commun. 2025 May 14;16(1):4469. doi: 10.1038/s41467-025-59823-x.
Metal-catalyzed hydrosilylation of alkynes is recognized as a straightforward and atom economic method for synthesizing alkenylsilanes. While substantial advancements have been made with terminal alkynes, achieving precise regio- and stereocontrol with unsymmetrical internal alkynes remains a significant challenge. In this study, we report the utilization of an intriguing β-boron effect in metal catalysis, enabling an exclusively regioselective Ru-catalyzed hydrosilylation of propargylic N-methyliminodiacetic acid boronates (B(MIDA)) to synthesize alkenylsilanes. Variations in the Ru catalyst can lead to stereo-divergency without compromising regioselectivity. Density functional theory (DFT) calculations indicate that the hyperconjugative effect of the σ(C-B) bond, which stabilizes the electrophilic metallacyclopropene intermediate with Fischer carbene character, is crucial for achieving high regioselectivity. The observed switch in stereoselectivity is attributed to the different steric effects of 1,2,3,4,5-pentamethylcyclopenta-1,3-diene (Cp*) and cyclopenta-1,3-diene (Cp) ligands in the catalyst. This method produces a diverse array of regio- and stereodefined products incorporating boryl, silyl, and alkene functionalities, each of which serves as a valuable handle for further functionalization.
金属催化的炔烃硅氢化反应被认为是一种合成烯基硅烷的直接且原子经济的方法。虽然末端炔烃的反应已经取得了显著进展,但对于不对称内炔烃实现精确的区域和立体控制仍然是一项重大挑战。在本研究中,我们报道了在金属催化中利用一种有趣的β-硼效应,实现了钌催化的炔丙基N-甲基亚氨基二乙酸硼酸酯(B(MIDA))的区域选择性硅氢化反应,从而合成烯基硅烷。钌催化剂的变化可以导致立体发散,同时不影响区域选择性。密度泛函理论(DFT)计算表明,σ(C-B)键的超共轭效应稳定了具有费歇尔卡宾特征的亲电金属环丙烯中间体,这对于实现高区域选择性至关重要。观察到的立体选择性转变归因于催化剂中1,2,3,4,5-五甲基环戊二烯(Cp*)和环戊二烯(Cp)配体的不同空间效应。该方法产生了一系列包含硼基、硅基和烯烃官能团的区域和立体定义明确的产物,每个产物都可作为进一步功能化的有价值的基团。