Ma Wenchao, Morales-Vidal Jordi, Tian Jiaming, Liu Meng-Ting, Jin Seongmin, Ren Wenhao, Taubmann Julian, Chatzichristodoulou Christodoulos, Luterbacher Jeremy, Chen Hao Ming, López Núria, Hu Xile
Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Tarragona, Spain.
Nature. 2025 May;641(8065):1156-1161. doi: 10.1038/s41586-025-08978-0. Epub 2025 May 14.
Electrochemical CO reduction into chemicals and fuels holds great promise for renewable energy storage and carbon recycling. Although high-temperature CO electroreduction in solid oxide electrolysis cells is industrially relevant, current catalysts have modest energy efficiency and a limited lifetime at high current densities, generally below 70% and 200 h, respectively, at 1 A cm and temperatures of 800 °C or higher. Here we develop an encapsulated Co-Ni alloy catalyst using SmO-doped CeO that exhibits an energy efficiency of 90% and a lifetime of more than 2,000 h at 1 A cm for high-temperature CO-to-CO conversion at 800 °C. Its selectivity towards CO is about 100%, and its single-pass yield reaches 90%. We show that the efficacy of our catalyst arises from its unique encapsulated structure and optimized alloy composition, which simultaneously enable enhanced CO adsorption, moderate CO adsorption and suppressed metal agglomeration. This work provides an efficient strategy for the design of catalysts for high-temperature reactions that overcomes the typical trade-off between activity and stability and has potential industrial applications.
将电化学一氧化碳还原为化学品和燃料对于可再生能源存储和碳循环具有巨大的前景。尽管固体氧化物电解槽中的高温一氧化碳电还原在工业上具有相关性,但目前的催化剂能源效率适中,在高电流密度下寿命有限,在1 A/cm²和800°C或更高温度下,通常分别低于70%和200小时。在此,我们开发了一种使用掺SmO的CeO封装的Co-Ni合金催化剂,该催化剂在800°C下将一氧化碳高效转化为一氧化碳时,在1 A/cm²下表现出90%的能源效率和超过2000小时的寿命。其对一氧化碳的选择性约为100%,单程产率达到90%。我们表明,我们的催化剂的有效性源于其独特的封装结构和优化的合金组成,这同时实现了增强的一氧化碳吸附、适度的一氧化碳吸附和抑制的金属团聚。这项工作为高温反应催化剂的设计提供了一种有效的策略,克服了活性和稳定性之间的典型权衡,具有潜在的工业应用价值。