Suppr超能文献

解析SHP2-E76突变的结构和动态效应:对致癌激活的机制性见解。

Deciphering the structural and dynamic effects of SHP2-E76 mutations: mechanistic insights into oncogenic activation.

作者信息

Rafiq Humaira, Han Lu, Rehman Ashfaq Ur, He Pei, Abdelhameed Ali Saber, Hassan Eman S G, Fu Hongxia, Wadood Abdul, Hu Junjian

机构信息

Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan.

Department of Central Laboratory, SSL, Central Hospital of Dongguan City, Affiliated Dongguan Shilong People's Hospital of Guangdong Medical University, Dongguan, China.

出版信息

BMC Chem. 2025 May 14;19(1):128. doi: 10.1186/s13065-025-01494-2.

Abstract

The tyrosine phosphatase known as SHP2 is a cytoplasmic protein and encodes by proto-oncogene PTPN11. This protein is essential for the regulation of cell growth, differentiation, programed cell death, and survival. This regulation is achieved through the release of intramolecular autoinhibition and the modulation of several signaling pathways, including the signaling cascade of Ras-MAPK. Mutations in SHP2 are frequently associated with human malignancies and neurodevelopmental disorders (NDDs). Specifically, a germline mutation (E76D) in SHP2 is linked to neurodevelopmental disorders, such as Noonan syndrome, while somatic mutations (E76G and E76A) and altered SHP2 expression are implicated in several forms of leukemia. These mutations disrupt the closed conformation, which normally keeps SHP2 in an inactive, auto-inhibited state, thereby enhancing phosphatase activity and activating SHP2, leading to a gain-of-function effect. However, the structural and functional implications of these disease-related mutants are not well elucidated. Therefore, in this study, we investigate the structural mechanisms underlying three distinct gain-of-function SHP2 mutations (E76D, E76G, and E76A) through the application of molecular dynamics (MD) simulations, focusing on how a single amino acid mutation at the same position result in different disease phenotypes, either cause cancer or NDDs. Notably, Patients with Noonan Syndrome have an increased risk of developing cancer, suggesting a potential link between these diseases and their mutations. MD simulation was employed to elucidate this mechanism, examining four distinct states: Apo-state (E76), M1-state (E76D), M2-state (E76G), and M3-state (E76A). The dynamics and conformational changes of SHP2 in both its Apo-state and mutant states (M1, M2, and M3) were compared. Our findings indicate that both cancer-related and NDD-related mutations destabilize the N-SH2 and PTP interface, facilitating SHP2 activation. However, the cancer-associated mutations induce more severe disruption at the N-SH2 and PTP interface than the NDD mutations. Additionally, dynamic analyses revealed that mutations at the interface (M1, M2, and M3) not only alter the native folded conformation of SHP2 but also significantly enhance the C-distance between the N-SH2 and PTP domains. Overall, this study provides a comprehensive understanding of the structural dynamics of SHP2 at the atomic level, revealing how mutations disrupt its auto-inhibition and increase PTP activity, providing valuable insights into the molecular mechanisms driving both cancer and neurodevelopmental disorders.

摘要

被称为SHP2的酪氨酸磷酸酶是一种细胞质蛋白,由原癌基因PTPN11编码。这种蛋白质对于细胞生长、分化、程序性细胞死亡和存活的调节至关重要。这种调节是通过分子内自抑制的解除以及对包括Ras-MAPK信号级联在内的几种信号通路的调节来实现的。SHP2中的突变经常与人类恶性肿瘤和神经发育障碍(NDDs)相关。具体而言,SHP2中的种系突变(E76D)与神经发育障碍有关,如努南综合征,而体细胞突变(E76G和E76A)以及SHP2表达的改变与多种形式的白血病有关。这些突变破坏了通常使SHP2处于无活性、自抑制状态的封闭构象,从而增强了磷酸酶活性并激活了SHP2,导致功能获得效应。然而,这些与疾病相关的突变体的结构和功能影响尚未得到充分阐明。因此,在本研究中,我们通过应用分子动力学(MD)模拟来研究三种不同的功能获得性SHP2突变(E76D、E76G和E76A)的结构机制,重点关注同一位置的单个氨基酸突变如何导致不同的疾病表型,即引发癌症或NDDs。值得注意的是,努南综合征患者患癌症的风险增加,这表明这些疾病与其突变之间存在潜在联系。采用MD模拟来阐明这一机制,研究四种不同状态:无配体状态(E76)、M1状态(E76D)、M2状态(E76G)和M3状态(E76A)。比较了SHP2在其无配体状态和突变状态(M1、M2和M3)下的动力学和构象变化。我们的研究结果表明,与癌症相关和与NDD相关的突变都会使N-SH2和PTP界面不稳定,促进SHP2激活。然而,与癌症相关的突变在N-SH2和PTP界面引起的破坏比与NDD相关的突变更严重。此外,动力学分析表明,界面处的突变(M1、M2和M3)不仅改变了SHP2的天然折叠构象,还显著增加了N-SH2和PTP结构域之间的C距离。总体而言,本研究在原子水平上全面了解了SHP2的结构动力学,揭示了突变如何破坏其自抑制并增加PTP活性,为驱动癌症和神经发育障碍的分子机制提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d49/12079960/c27a93d15948/13065_2025_1494_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验