Watanabe Takamitsu, Inoue Katsuma, Kuniyoshi Yasuo, Nakajima Kohei, Aihara Kazuyuki
International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.
Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
Adv Sci (Weinh). 2025 Jun;12(22):e2414016. doi: 10.1002/advs.202414016. Epub 2025 May 14.
Large language models (LLMs) respond fluently but often inaccurately, which resembles aphasia in humans. Does this behavioral similarity indicate any resemblance in internal information processing between LLMs and aphasic humans? Here, we address this question by comparing the network dynamics between LLMs-ALBERT, GPT-2, Llama-3.1 and one Japanese variant of Llama-and various aphasic brains. Using energy landscape analysis, we quantify how frequently the network activity pattern is likely to move from one state to another (transition frequency) and how long it tends to dwell in each state (dwelling time). First, by investigating the frequency spectrums of these two indices for brain dynamics, we find that the degrees of the polarization of the transition frequency and dwelling time enable accurate classification of receptive aphasia, expressive aphasia and controls: receptive aphasia shows the bimodal distributions for both indices, whereas expressive aphasia exhibits the most uniform distributions. In parallel, we identify highly polarized distributions in both transition frequency and dwelling time in the network dynamics in the four LLMs. These findings indicate the similarity in internal information processing between LLMs and receptive aphasia, and the current approach can provide a novel diagnosis and classification tool for LLMs and help their performance improve.
大型语言模型(LLMs)回答流畅但常常不准确,这与人类的失语症相似。这种行为上的相似性是否表明LLMs与失语症患者在内部信息处理方面存在任何相似之处?在这里,我们通过比较LLMs(ALBERT、GPT-2、Llama-3.1和一种日语变体Llama)与各种失语症大脑之间的网络动态来解决这个问题。使用能量景观分析,我们量化了网络活动模式从一种状态转变为另一种状态的频率(转变频率)以及它在每种状态下停留的时间(停留时间)。首先,通过研究这两个大脑动力学指标的频谱,我们发现转变频率和停留时间的极化程度能够准确区分感受性失语症、表达性失语症和对照组:感受性失语症在这两个指标上均呈现双峰分布,而表达性失语症则表现出最均匀的分布。同时,我们在四个LLMs的网络动态中识别出转变频率和停留时间的高度极化分布。这些发现表明LLMs与感受性失语症在内部信息处理方面存在相似性,并且当前的方法可以为LLMs提供一种新颖的诊断和分类工具,并有助于提高它们的性能。