Suppr超能文献

失语症康复队列,一个开源的慢性中风存储库。

The Aphasia Recovery Cohort, an open-source chronic stroke repository.

机构信息

Department of Psychology, University of South Carolina, Columbia, SC, USA.

Department of Neurology, University of South Carolina School of Medicine, Columbia, SC, USA.

出版信息

Sci Data. 2024 Sep 9;11(1):981. doi: 10.1038/s41597-024-03819-7.

Abstract

Sharing neuroimaging datasets enables reproducibility, education, tool development, and new discoveries. Neuroimaging from many studies are publicly available, providing a glimpse into progressive disorders and human development. In contrast, few stroke studies are shared, and these datasets lack longitudinal sampling of functional imaging, diffusion imaging, as well as the behavioral and demographic data that encourage novel applications. This is surprising, as stroke is a leading cause of disability, and acquiring brain imaging is considered standard of care. The first release of the Aphasia Recovery Cohort includes imaging data, demographics and behavioral measures from 230 chronic stroke survivors who experienced aphasia. We also share scripts to illustrate how the imaging data can predict impairment. In conclusion, recent advances in machine learning thrive on large, diverse datasets. Clinical data sharing can contribute to improvements in automated detection of brain injury, identification of white matter hyperintensities, measures of brain health, and prognostic abilities to guide care.

摘要

分享神经影像学数据集可以实现可重复性、教育、工具开发和新发现。许多研究的神经影像学数据都是公开的,这为我们了解进行性疾病和人类发育提供了一些线索。相比之下,很少有中风研究被分享,这些数据集缺乏功能成像、扩散成像的纵向采样,以及鼓励新应用的行为和人口统计学数据。这令人惊讶,因为中风是导致残疾的主要原因,获取脑部成像被认为是标准的治疗方法。失语症康复队列的第一个版本包括来自 230 名经历失语症的慢性中风幸存者的影像数据、人口统计学和行为测量数据。我们还分享了脚本,说明如何使用影像数据来预测损伤。总之,机器学习的最新进展得益于大型、多样化的数据集。临床数据共享可以有助于改进大脑损伤的自动检测、白质高信号的识别、大脑健康的测量以及预后能力,以指导治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cf5/11384737/7fbab7204af3/41597_2024_3819_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验