Suppr超能文献

从失语症的角度看预先训练的大型语言模型的临床疗效。

Clinical efficacy of pre-trained large language models through the lens of aphasia.

机构信息

School of Languages and Cultures, Purdue University, West Lafayette, USA.

Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, USA.

出版信息

Sci Rep. 2024 Jul 6;14(1):15573. doi: 10.1038/s41598-024-66576-y.

Abstract

The rapid development of large language models (LLMs) motivates us to explore how such state-of-the-art natural language processing systems can inform aphasia research. What kind of language indices can we derive from a pre-trained LLM? How do they differ from or relate to the existing language features in aphasia? To what extent can LLMs serve as an interpretable and effective diagnostic and measurement tool in a clinical context? To investigate these questions, we constructed predictive and correlational models, which utilize mean surprisals from LLMs as predictor variables. Using AphasiaBank archived data, we validated our models' efficacy in aphasia diagnosis, measurement, and prediction. Our finding is that LLMs-surprisals can effectively detect the presence of aphasia and different natures of the disorder, LLMs in conjunction with the existing language indices improve models' efficacy in subtyping aphasia, and LLMs-surprisals can capture common agrammatic deficits at both word and sentence level. Overall, LLMs have potential to advance automatic and precise aphasia prediction. A natural language processing pipeline can be greatly benefitted from integrating LLMs, enabling us to refine models of existing language disorders, such as aphasia.

摘要

大型语言模型(LLMs)的快速发展促使我们探索这种最先进的自然语言处理系统如何为失语症研究提供信息。我们可以从预先训练的 LLM 中得出哪些语言指标?它们与失语症中的现有语言特征有何不同或有何关系?在临床环境中,LLMs 可以在多大程度上作为一种可解释且有效的诊断和测量工具?为了研究这些问题,我们构建了预测和相关模型,这些模型使用来自 LLM 的平均惊讶度作为预测变量。我们使用 AphasiaBank 存档数据验证了我们的模型在失语症诊断、测量和预测方面的有效性。我们的发现是,LLMs 的惊讶度可以有效地检测出失语症的存在和不同的障碍性质,LLMs 与现有的语言指标结合可以提高失语症亚型划分的模型效能,并且 LLM 的惊讶度可以捕捉到词和句两个层面上的常见非语法缺陷。总的来说,LLMs 有可能推进自动和精确的失语症预测。自然语言处理管道可以从整合 LLM 中大大受益,使我们能够改进现有的语言障碍模型,如失语症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a21/11227580/9cfc56a98a01/41598_2024_66576_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验