Suppr超能文献

开发演示遗传模型以模拟遗传拯救的指南。

A Guide for Developing Demo-Genetic Models to Simulate Genetic Rescue.

作者信息

Beaman Julian E, Gates Katie, Saltré Frédérik, Hogg Carolyn J, Belov Katherine, Ashman Kita, da Silva Karen Burke, Beheregaray Luciano B, Bradshaw Corey J A

机构信息

Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering Flinders University Adelaide South Australia Australia.

Molecular Ecology Laboratory, College of Science and Engineering Flinders University Adelaide South Australia Australia.

出版信息

Evol Appl. 2025 May 14;18(5):e70092. doi: 10.1111/eva.70092. eCollection 2025 May.

Abstract

Genetic rescue is a conservation management strategy that reduces the negative effects of genetic drift and inbreeding in small and isolated populations. However, such populations might already be vulnerable to random fluctuations in growth rates (demographic stochasticity). Therefore, the success of genetic rescue depends not only on the genetic composition of the source and target populations but also on the emergent outcome of interacting demographic processes and other stochastic events. Developing predictive models that account for feedback between demographic and genetic processes ('demo-genetic feedback') is therefore necessary to guide the implementation of genetic rescue to minimize the risk of extinction of threatened populations. Here, we explain how the mutual reinforcement of genetic drift, inbreeding, and demographic stochasticity increases extinction risk in small populations. We then describe how these processes can be modelled by parameterizing underlying mechanisms, including deleterious mutations with partial dominance and demographic rates with variances that increase as abundance declines. We combine our suggestions of model parameterization with a comparison of the relevant capability and flexibility of five open-source programs designed for building genetically explicit, individual-based simulations. Using one of the programs, we provide a heuristic model to demonstrate that simulated genetic rescue can delay extinction of small virtual populations that would otherwise be exposed to greater extinction risk due to demo-genetic feedback. We then use a case study of threatened Australian marsupials to demonstrate that published genetic data can be used in one or all stages of model development and application, including parameterization, calibration, and validation. We highlight that genetic rescue can be simulated with either virtual or empirical sequence variation (or a hybrid approach) and suggest that model-based decision-making should be informed by ranking the sensitivity of predicted probability/time to extinction to variation in model parameters (e.g., translocation size, frequency, source populations) among different genetic-rescue scenarios.

摘要

基因拯救是一种保护管理策略,可减少小型孤立种群中基因漂变和近亲繁殖的负面影响。然而,这类种群可能已经容易受到增长率随机波动(人口统计学随机性)的影响。因此,基因拯救的成功不仅取决于源种群和目标种群的基因组成,还取决于人口统计学过程与其他随机事件相互作用产生的结果。因此,开发能够考虑人口统计学和基因过程之间反馈(“人口统计学 - 基因反馈”)的预测模型,对于指导基因拯救的实施以最小化受威胁种群灭绝风险是必要的。在这里,我们解释基因漂变、近亲繁殖和人口统计学随机性的相互强化如何增加小种群的灭绝风险。然后,我们描述如何通过对潜在机制进行参数化来模拟这些过程,包括具有部分显性的有害突变以及随着种群数量下降方差增加的人口统计学速率。我们将模型参数化的建议与对五个用于构建基因明确、基于个体的模拟的开源程序的相关能力和灵活性的比较相结合。使用其中一个程序,我们提供了一个启发式模型,以证明模拟的基因拯救可以延迟小型虚拟种群的灭绝,否则这些种群由于人口统计学 - 基因反馈而面临更大的灭绝风险。然后,我们以受威胁的澳大利亚有袋动物为例进行研究,以证明已发表的基因数据可用于模型开发和应用的一个或所有阶段,包括参数化、校准和验证。我们强调,可以使用虚拟或经验序列变异(或混合方法)来模拟基因拯救,并建议基于模型的决策应通过对不同基因拯救方案中预测灭绝概率/时间对模型参数(例如迁移规模、频率、源种群)变化的敏感性进行排序来提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a8d/12076008/2ed427cb20ef/EVA-18-e70092-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验