基于二氧化锰的pH响应型多功能纳米颗粒递送甲氨蝶呤用于类风湿性关节炎的靶向治疗。

Manganese Dioxide-Based pH-Responsive Multifunctional Nanoparticles Deliver Methotrexate for Targeted Rheumatoid Arthritis Treatment.

作者信息

Jia Jingwen, Liu Min, Yang Han, Li XiaoFang, Liu Siyi, Li Kexin, Zhang Jiulong, Zhao Xiuli

机构信息

College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.

出版信息

Biomater Res. 2025 May 14;29:0187. doi: 10.34133/bmr.0187. eCollection 2025.

Abstract

Rheumatoid arthritis (RA) is an autoimmune disease characterized by hypoxia and reactive oxygen species (ROS) overexpression, which cause inflammatory cascade and cartilage erosion. As representative inflammatory cells, macrophages produce many inflammatory factors, and intracellular ROS is abnormally elevated. Therefore, improving hypoxia and scavenging ROS are essential to inhibit the inflammatory response of synovial macrophages and cartilage destruction. Due to the complex microenvironment of RA and the single action of most anti-inflammatory and antioxidant drugs, as well as the difficulty in reversing the microenvironment with current formulations developed for ROS clearance, it is necessary to develop multifunctional nanoparticles (NPs) to achieve better therapeutic effects. In this work, we constructed a delivery system called PCM@MnO NPs, which could reduce inflammatory factors and improve the RA environment through multifunctional synergistic effects such as eliminating ROS and generating oxygen. Specifically, chondroitin sulfate was used to form NPs with methotrexate (MTX) through electrostatic interactions and hydrogen bonding and further loaded with MnO to form CM@MnO NPs. Furthermore, modification of polydopamine on the surface of CM@MnO NPs improved the stability of the formulation and extended the cycle time. Under the acidic (pH 6.5) microenvironment of RA, polydopamine shells were dissociated. Chondroitin sulfate could target inflammatory macrophages via the CD44 receptor and subsequently release MTX and MnO under low-intracellular-pH (pH 5.2) conditions. MnO could decompose and consume ROS and further produce oxygen in the process of decomposing HO, alleviating the hypoxic microenvironment of RA. In addition, MTX could also inhibit the secretion of cytokines. Overall, by regulating the RA microenvironment through the various synergistic effects mentioned above, it could promote macrophage polarization and alleviate RA progression. The experimental results in vitro and in vivo indicated that pH-responsive PCM@MnO NPs could accumulate in inflammatory joints by the extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS) effect, enhance the precise delivery of MTX by targeting RA macrophages, and effectively alleviate the progression of disease and reduce the symptoms of collagen-induced arthritis mouse models. In general, using multifunctional synergistic therapy for RA is an effective potential strategy.

摘要

类风湿性关节炎(RA)是一种自身免疫性疾病,其特征在于缺氧和活性氧(ROS)的过度表达,这会引发炎症级联反应和软骨侵蚀。作为典型的炎症细胞,巨噬细胞会产生许多炎症因子,并且细胞内ROS会异常升高。因此,改善缺氧状况和清除ROS对于抑制滑膜巨噬细胞的炎症反应以及软骨破坏至关重要。由于RA的微环境复杂,大多数抗炎和抗氧化药物作用单一,且目前用于ROS清除的制剂难以逆转这种微环境,因此有必要开发多功能纳米颗粒(NPs)以获得更好的治疗效果。在这项工作中,我们构建了一种名为PCM@MnO NPs的递送系统,它可以通过消除ROS和产生氧气等多功能协同作用来减少炎症因子并改善RA环境。具体而言,硫酸软骨素通过静电相互作用和氢键与甲氨蝶呤(MTX)形成NPs,并进一步负载MnO形成CM@MnO NPs。此外,在CM@MnO NPs表面修饰聚多巴胺提高了制剂的稳定性并延长了循环时间。在RA的酸性(pH 6.5)微环境下,聚多巴胺壳层解离。硫酸软骨素可以通过CD44受体靶向炎性巨噬细胞,随后在低细胞内pH(pH 5.2)条件下释放MTX和MnO。MnO可以分解并消耗ROS,并在分解H₂O₂的过程中进一步产生氧气,缓解RA的缺氧微环境。此外,MTX还可以抑制细胞因子的分泌。总体而言,通过上述各种协同作用调节RA微环境,可以促进巨噬细胞极化并减轻RA进展。体外和体内实验结果表明,pH响应性PCM@MnO NPs可以通过渗漏血管外渗和随后的炎性细胞介导的隔离(ELVIS)效应在炎性关节中积累,通过靶向RA巨噬细胞增强MTX的精确递送,并有效缓解疾病进展,减轻胶原诱导的关节炎小鼠模型的症状。总的来说,对RA采用多功能协同治疗是一种有效的潜在策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a78/12076153/253492fd6750/bmr.0187.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索