Wang Qing, Zhang Daixing, Qi Yining, Huang Changbao, Ding Dejun, Liu Chuanliang
School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China.
College of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China.
Front Pharmacol. 2025 Apr 30;16:1587890. doi: 10.3389/fphar.2025.1587890. eCollection 2025.
The growing threat of bacterial infections poses a critical challenge to public health, underscoring the urgent need for innovative antibacterial agents and therapeutic strategies. In response, we have developed a multifunctional nanoplatform based on palladium-hydride metal-organic frameworks (P(H)ZPAg) for synergistic hydrogen and photothermal antibacterial therapy.
This nanoplatform integrates palladium hydride (PdH) encapsulated within a zeolitic imidazolate framework (ZIF-8), surface modification with polydopamine (PDA), and in situ generation of silver nanoparticles (Ag NPs) to achieve enhanced antibacterial efficacy. Comprehensive characterization was performed to assess hydrogen release kinetics, photothermal performance, and silver-mediated bactericidal activity. The therapeutic potential of P(H)ZPAg was further evaluated in vivo using a -infected rat wound model.
The P(H)ZPAg nanoplatform demonstrated a successful combination of hydrogen release, photothermal conversion, and silver ion-based antibacterial mechanisms. In vitro assays revealed potent synergistic antibacterial effects against both and . In vivo studies showed that treatment with P(H)ZPAg nanoparticles significantly enhanced wound healing and bacterial clearance compared to control groups.
These findings highlight the potential of combining hydrogen therapy, photothermal therapy, and silver ion release within a single nanoplatform to markedly improve antibacterial outcomes. This study presents a promising strategy for the development of multifunctional nanotherapeutics, offering a novel and effective approach for managing topical bacterial infections and promoting wound healing.
细菌感染日益增长的威胁对公共卫生构成了严峻挑战,凸显了对创新抗菌剂和治疗策略的迫切需求。作为回应,我们开发了一种基于钯氢化物金属有机框架(P(H)ZPAg)的多功能纳米平台,用于协同氢和光热抗菌治疗。
该纳米平台将封装在沸石咪唑酯框架(ZIF-8)内的钯氢化物(PdH)、聚多巴胺(PDA)表面改性以及银纳米颗粒(Ag NPs)的原位生成相结合,以实现增强的抗菌效果。进行了全面表征,以评估氢释放动力学、光热性能和银介导的杀菌活性。使用感染的大鼠伤口模型在体内进一步评估了P(H)ZPAg的治疗潜力。
P(H)ZPAg纳米平台展示了氢释放、光热转换和银离子基抗菌机制的成功结合。体外试验显示对[具体细菌名称1]和[具体细菌名称2]具有强大的协同抗菌作用。体内研究表明,与对照组相比,用P(H)ZPAg纳米颗粒治疗显著促进了伤口愈合和细菌清除。
这些发现突出了在单个纳米平台内结合氢疗法、光热疗法和银离子释放以显著改善抗菌效果的潜力。本研究提出了一种开发多功能纳米治疗剂的有前景的策略,为处理局部细菌感染和促进伤口愈合提供了一种新颖有效的方法。