Xu Yuhang, Xu Xiaoyu, Zhao Yuan, Tian YaNing, Ma Yubo, Zhang Xin, Li Fanni, Zhao Wei, Ma Jianzhong, Xu Qunna, Sun Qi
Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
Acta Biomater. 2025 May 15;198:63-84. doi: 10.1016/j.actbio.2025.03.047. Epub 2025 Mar 27.
Triboelectric nanogenerators (TENGs) have recently demonstrated great application potential for accelerating wound healing in the field of medical research due to their unique electrical stimulation effect. Among the various types of TENGs, solid-liquid TENGs have attracted much attention due to their significant advantages, such as high contact-separation efficiency and a wide range of liquid motion. Therefore, this study innovatively proposed a solid-liquid biphasic TENG electronic dressing constructed from a casein hydrogel enhanced by the metal-organic framework Zeolitic Imidazolate Framework-8 (ZIF-8). This hydrogel dressing comprised sodium caseinate (SC)/multi-walled carbon nanotubes-polydopamine@polydopamine (MWCNT@PDA)/polyacrylamide (PAM)/ZIF-8. It ingeniously integrates multiple functions such as photothermal, photodynamic antibacterial, and electrical stimulation therapies, thereby establishing a new multimodal synergistic treatment paradigm. Notably, the addition of ZIF-8 not only controlled photothermal release of antibacterial agents but also facilitates the development of a distinctive solid-liquid biphasic operational modality in TENG system, achieving a 131 V peak output voltage through significant enhancement of electrical performance parameters. In addition, the TENG-based system adopts a non-contact electrical stimulation method for wound treatment, fundamentally reducing the risk of infection caused by direct contact. Experiments using mouse fibroblasts revealed that the simultaneous real-time use of near-infrared light and TENG can significantly improve the cell migration process. Empirical studies on animals demonstrated that it could accelerate tissue regeneration and wound healing by increasing collagen deposition and angiogenesis. Based on these results, this study provides new perspectives for the developing intelligent biomedical composites for future wound management. STATEMENT OF SIGNIFICANCE: Chronic wounds have become a major threat to global medical and health fields due to pathogenic infections. Traditional wound dressings mostly focus on passive healing, which has limited effectiveness. To overcome these limitations, we developed an electronic dressing of a casein-based hydrogel TENG enhanced by a MOF. This electronic dressing combines photothermal, photodynamic antibacterial, and electrical stimulation functions and efficiently promotes wound healing through multifunctional synergy. This research provides a promising solution for diabetic wound care and a broader field of chronic wound treatment. It is a solid step in the scientific exploration of interdisciplinary integration, offering new ideas for making the wound treatment field more intelligent, efficient, and precise.
摩擦纳米发电机(TENGs)最近在医学研究领域展示出了巨大的应用潜力,因其独特的电刺激效应可加速伤口愈合。在各类TENG中,固液TENG因其显著优势,如高接触 - 分离效率和广泛的液体运动范围,而备受关注。因此,本研究创新性地提出了一种由金属有机框架沸石咪唑酯骨架 - 8(ZIF - 8)增强的酪蛋白水凝胶构建的固液双相TENG电子敷料。这种水凝胶敷料由酪蛋白酸钠(SC)/多壁碳纳米管 - 聚多巴胺@聚多巴胺(MWCNT@PDA)/聚丙烯酰胺(PAM)/ZIF - 8组成。它巧妙地整合了光热、光动力抗菌和电刺激疗法等多种功能,从而建立了一种新的多模态协同治疗模式。值得注意的是,ZIF - 8的加入不仅控制了抗菌剂的光热释放,还促进了TENG系统中独特的固液双相操作模式的发展,通过显著提高电性能参数实现了131 V的峰值输出电压。此外,基于TENG的系统采用非接触式电刺激方法进行伤口治疗,从根本上降低了直接接触引起的感染风险。使用小鼠成纤维细胞的实验表明,同时实时使用近红外光和TENG可以显著改善细胞迁移过程。动物实验研究表明,它可以通过增加胶原蛋白沉积和血管生成来加速组织再生和伤口愈合。基于这些结果,本研究为未来伤口管理中开发智能生物医学复合材料提供了新的视角。重要性声明:由于病原体感染,慢性伤口已成为全球医疗卫生领域的重大威胁。传统伤口敷料大多侧重于被动愈合,效果有限。为克服这些局限性,我们开发了一种由MOF增强的酪蛋白基水凝胶TENG电子敷料。这种电子敷料结合了光热、光动力抗菌和电刺激功能,并通过多功能协同作用有效促进伤口愈合。本研究为糖尿病伤口护理和更广泛的慢性伤口治疗领域提供了一个有前景的解决方案。这是跨学科整合科学探索中的坚实一步,为使伤口治疗领域更智能、高效和精确提供了新的思路。