Ma Yuan-Wei, Wang Guan-Fang, Chen Hong-Yi, Tsai Min-Yeh
Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan.
Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan.
Protein Sci. 2025 Jun;34(6):e70131. doi: 10.1002/pro.70131.
This study provides critical insights into the role of surface-mediated processes in Alzheimer's disease, with implications for the aggregation of Abeta42 peptides. Employing coarse-grained molecular dynamics simulations, we focus on elucidating the molecular intricacies of these processes beyond primary nucleation. Central to our investigation is the analysis of a freely diffusing Abeta42 monomer on preformed fibril structures. We conduct detailed calculations of the monomer's diffusion coefficient on fibril surfaces (as a one-dimensional case), along with various monomer orientations. Our findings reveal a strong and consistent correlation between the monomer's diffusion coefficient and its orientation on the surface. Further analysis differentiates the effects of parallel and perpendicular alignments with respect to the fibril axis. Additionally, we explore how different fibril surfaces influence monomer dynamics by comparing the C-terminal and N-terminal surfaces. We find that the monomer exhibits faster diffusion coefficients on the C-terminal surface. Differences in surface roughness (S), quantified using root-mean-square distances, significantly affect monomer dynamics, thereby influencing its diffusion on the surface. Importantly, this study underscores that fibril twisting acts as a regulatory niche, selectively influencing these orientations and their diffusion properties necessary for facilitating fibril growth within biologically relevant time scales. This discovery opens new avenues for targeted therapeutic strategies aimed at manipulating fibril dynamics to mitigate the progression of Alzheimer's disease.
本研究为表面介导过程在阿尔茨海默病中的作用提供了关键见解,这对β淀粉样蛋白42(Aβ42)肽的聚集具有重要意义。通过粗粒度分子动力学模拟,我们致力于阐明这些过程在初级成核之外的分子复杂性。我们研究的核心是分析在预先形成的纤维结构上自由扩散的Aβ42单体。我们对单体在纤维表面的扩散系数(作为一维情况)以及各种单体取向进行了详细计算。我们的研究结果揭示了单体的扩散系数与其在表面的取向之间存在强烈且一致的相关性。进一步的分析区分了平行和垂直于纤维轴排列的影响。此外,我们通过比较C端和N端表面,探讨了不同的纤维表面如何影响单体动力学。我们发现单体在C端表面表现出更快的扩散系数。使用均方根距离量化的表面粗糙度(S)差异显著影响单体动力学,从而影响其在表面的扩散。重要的是,本研究强调纤维扭转起到调节作用,选择性地影响这些取向及其扩散特性,这些特性对于在生物学相关时间尺度内促进纤维生长是必要的。这一发现为旨在操纵纤维动力学以减轻阿尔茨海默病进展的靶向治疗策略开辟了新途径。