Department of Chemistry, Tamkang University, New Taipei City, Taiwan251301.
J Phys Chem B. 2023 Feb 9;127(5):1074-1088. doi: 10.1021/acs.jpcb.2c05463. Epub 2023 Jan 27.
Proline / isomerization governs protein local conformational changes via its local mechanical rigidity. The amyloid-disrupting capacity of proline is widely acknowledged; however, the molecular mechanism is still not clear. To understand how proline residues in polypeptide chains influence amyloid propensity, we study several truncated sequences of the TDP-43 C-terminal region (287-322) and their triple proline variants (PPP). We use coarse-grained molecular simulation to study the time evolution of the process of aggregation in the early stages in an effective high-concentration condition (∼25 mM). This ensures the long time scales for protein association at laboratory concentrations. We use several experimentally determined structure templates as initial structures of monomer conformations. We carry out oligomer size analysis and cluster analysis, along with several structural measures, to characterize the size distributions of oligomers and their morphological/structural properties. We show that average oligomer size is not a good indicator of amyloid propensity. Structural order and/or morphological properties are better alternatives. We show that proline variants can efficiently maintain the formation of large "ordered" oligomers of shorter truncated sequences, i.e., 307-322. This "order" maintenance is weakened when using longer truncated sequences (i.e., 287-322), leading to the formation of "disordered" oligomers. From an energy trade-off perspective, if the entropic effect is weak (short sequence length), the shape-complementarity of proline variants effectively guides the oligomerization process to form "ordered" oligomer intermediates. This leads to a distinct aggregation pathway that promotes amyloid formation (on-pathway). Strong entropic effects (long sequence length), however, would cause the formation of "disordered" oligomers. This in turn will suppress amyloid formation (off-pathway). The proline shape-complementary effects provide a guided morphological restraint to facilitate the pathways of amyloid formation. Our study supports the importance of structure-based kinetic heterogeneity of prion-like sequence fragments in driving different aggregation pathways. This work sheds light on the role of morphological and structural order of early-stage oligomeric species in regulating amyloid-disrupting capacity by prolines.
脯氨酸/异构化通过其局部机械刚性控制蛋白质局部构象变化。脯氨酸具有破坏淀粉样蛋白的能力,这已得到广泛认可;然而,其分子机制仍不清楚。为了了解多肽链中脯氨酸残基如何影响淀粉样蛋白倾向,我们研究了 TDP-43 C 端区域(287-322)的几个截断序列及其三脯氨酸变体(PPP)。我们使用粗粒分子模拟研究了在有效高浓度条件(约 25 mM)下聚合过程的早期时间演化。这确保了在实验室浓度下蛋白质缔合的长时间尺度。我们使用几个实验确定的结构模板作为单体构象的初始结构。我们进行了低聚物大小分析和聚类分析,以及几个结构测量,以表征低聚物的大小分布及其形态/结构性质。我们表明,平均低聚物大小不是淀粉样蛋白倾向的良好指标。结构有序性和/或形态特性是更好的选择。我们表明,脯氨酸变体可以有效地维持较短截断序列(即 307-322)的大“有序”低聚物的形成。当使用较长的截断序列(即 287-322)时,这种“有序”维持会减弱,导致“无序”低聚物的形成。从能量权衡的角度来看,如果熵效应较弱(序列较短),脯氨酸变体的形状互补性有效地指导低聚物化过程形成“有序”低聚物中间体。这导致了一种独特的聚集途径,促进了淀粉样蛋白的形成(在途径上)。然而,较强的熵效应(较长的序列长度)会导致“无序”低聚物的形成。这反过来又会抑制淀粉样蛋白的形成(在途径之外)。脯氨酸的形状互补效应为促进淀粉样蛋白形成的形态约束提供了指导。我们的研究支持基于结构的类朊病毒序列片段的动力学异质性在驱动不同聚集途径方面的重要性。这项工作阐明了早期低聚物物种的形态和结构有序性在调节脯氨酸破坏淀粉样蛋白能力方面的作用。