Suppr超能文献

用于提高光催化和光电化学性能的高度取向氮掺杂花状氧化锌纳米结构:实验与密度泛函理论联合研究

Highly Oriented Nitrogen-Doped Flower-like ZnO Nanostructures for Boosting Photocatalytic and Photoelectrochemical Performance: A Combined Experimental and DFT Study.

作者信息

Wary Riu Riu, Das Abinash, Amirov Emir S, Liu Dongyu, Gumber Shriya, Kazakova Elena A, Vasenko Andrey S, Prezhdo Oleg V

机构信息

Department of Physics, Bagadhar Brahma Kishan College, Jalah, Baksa 781327, Assam, India.

Solar Fuel Research Group (SFRG), PSG Institute of Advanced Studies, Coimbatore 641004, Tamil Nadu, India.

出版信息

J Phys Chem Lett. 2025 May 22;16(20):5180-5187. doi: 10.1021/acs.jpclett.5c01085. Epub 2025 May 15.

Abstract

A facile method to modify the ZnO catalyst by nitrogen doping and synthesis of a highly oriented flower-like structure is reported. The generated system exhibits an enhanced photoinduced charge separation through the lightning rod effect. A well-aligned structure and high aspect ratio of ZnO nanorods is confirmed by the XRD, FESEM and TEM analyses. Efficient photogenerated charge transfer is achieved upon light irradiation, as confirmed by PL and EIS studies. Density functional theory (DFT) calculations provide an atomistic understanding of the modified electronic structure of N-doped ZnO. N-doped ZnO with 5 wt % exhibits the best photocatalytic performance. When applied to the photoelectrochemical water splitting, the optimal catalyst can achieve a remarkable photocurrent density of 4.0 mAcm at the lowest onset potential of 0.61 V vs Ag/AgCl (1.40 V vs RHE). The reported work demonstrates that rational design of doped materials opens up new avenues for catalyst development.

摘要

报道了一种通过氮掺杂修饰ZnO催化剂并合成高度取向的花状结构的简便方法。所生成的体系通过避雷针效应表现出增强的光生电荷分离。通过XRD、FESEM和TEM分析证实了ZnO纳米棒具有良好的排列结构和高纵横比。PL和EIS研究证实,光照时实现了高效的光生电荷转移。密度泛函理论(DFT)计算提供了对氮掺杂ZnO改性电子结构的原子层面理解。5 wt%的氮掺杂ZnO表现出最佳的光催化性能。当应用于光电化学水分解时,最佳催化剂在相对于Ag/AgCl为0.61 V(相对于RHE为1.40 V)的最低起始电位下可实现4.0 mAcm的显著光电流密度。所报道的工作表明,掺杂材料的合理设计为催化剂开发开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcd2/12105002/9f9469ab9c88/jz5c01085_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验