Suppr超能文献

通过MoS与碳纳米管异质结构中的电子离域实现的长程电荷传输。

Long-Range Charge Transport Facilitated by Electron Delocalization in MoS and Carbon Nanotube Heterostructures.

作者信息

Blach Daria D, Sulas-Kern Dana B, Wang Bipeng, Long Run, Ma Qiushi, Prezhdo Oleg V, Blackburn Jeffrey L, Huang Libai

机构信息

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

出版信息

ACS Nano. 2025 Jan 28;19(3):3439-3447. doi: 10.1021/acsnano.4c12858. Epub 2025 Jan 15.

Abstract

Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear. In this study, we directly image charge transport at the interfaces of single- and multilayered MoS and (6,5) SWCNT heterostructures using transient absorption microscopy. We find that charge recombination becomes slower as the layer thickness of MoS increases. This behavior can be explained by electron delocalization in multilayers and reduced orbital overlap with the SWCNTs, as suggested by nonadiabatic (NA) molecular dynamics (MD) simulations. Dipolar repulsion of interfacial excitons results in rapid density-dependent transport within the first 100 ps. Stronger repulsion and longer-range charge transport are observed in heterostructures with thicker MoS layers, driven by electron delocalization and larger interfacial dipole moments. These findings are consistent with the results from NAMD simulations. Our results suggest that heterostructures with multilayer MoS can facilitate long-lived charge separation and transport, which is promising for applications in photovoltaics and photocatalysis.

摘要

控制纳米结构界面处的电荷传输对于其在光电子和太阳能应用中的成功应用至关重要。基于单壁碳纳米管(SWCNT)和过渡金属二硫属化物(TMDC)的混合维度异质结构已展现出异常长寿命的电荷分离态。然而,控制这些界面处电荷传输的因素仍不明确。在本研究中,我们使用瞬态吸收显微镜直接成像单层和多层MoS与(6,5) SWCNT异质结构界面处的电荷传输。我们发现,随着MoS层厚度增加,电荷复合变得更慢。如非绝热(NA)分子动力学(MD)模拟所表明的,这种行为可通过多层中的电子离域以及与SWCNT的轨道重叠减少来解释。界面激子的偶极排斥导致在最初100皮秒内出现快速的密度依赖性传输。在具有更厚MoS层的异质结构中观察到更强的排斥和更远程的电荷传输,这是由电子离域和更大的界面偶极矩驱动的。这些发现与NAMD模拟结果一致。我们的结果表明,具有多层MoS的异质结构可促进长寿命的电荷分离和传输,这对于光伏和光催化应用很有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d291/11781022/61f35e251be3/nn4c12858_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验