Masson Louis-Charles, Kanagasabai Atchaya S, Márquez Brenda Toscano, Tourbina-Kolomiets Julia, Charron Francois, Watt Alanna J, McKinney R Anne
Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
Department of Biology, McGill University, Montreal, QC, Canada.
Cerebellum. 2025 May 15;24(4):99. doi: 10.1007/s12311-025-01850-x.
Patterned cell death is a common feature of many neurodegenerative diseases. This is apparent in cerebellar Purkinje cells (PCs) in patients and mouse models of Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). In ARSACS, PCs in the anterior cerebellar vermis are vulnerable to degeneration while those in the posterior vermis are resilient. As the mechanisms underpinning cerebellar pathophysiology in ARSACS are not fully understood, we chose to investigate two important regulatory pathways for cellular health in neurons: (1) the autophagy-lysosome pathway which is important for the trafficking of cargo essential for proper neuronal function, as well as (2) excitatory amino acid transporters (EAATs) that regulate extracellular glutamate levels. Using a mouse model of ARSACS (Sacs/), we found a significant decrease in the Na/H exchanger 6 (NHE6) in the PCs in the vulnerable anterior but not resilient posterior cerebellum. We looked at two EAATs that are highly expressed in the cerebellum: EAAT1 and EAAT4. Glial EAAT1 levels were significantly reduced in both anterior and posterior lobules, which could lead to excitotoxicity. However, the neuronal EAAT4 protein was elevated only in the resilient posterior PCs, likely counteracting the effects of reduced EAAT1 in posterior cerebellum. These results point to possible impairment in the endocytic pathway in the ARSACS cerebellum, and an elevation of EAAT4 glutamate transporters in the resilient posterior lobules of the cerebellar vermis that may contribute to neuroprotection.
程序性细胞死亡是许多神经退行性疾病的共同特征。这在常染色体隐性遗传性沙勒沃伊 - 萨格奈痉挛性共济失调(ARSACS)患者和小鼠模型的小脑浦肯野细胞(PCs)中很明显。在ARSACS中,小脑蚓部前部的PCs易发生变性,而蚓部后部的PCs则具有抗性。由于ARSACS中小脑病理生理学的潜在机制尚未完全了解,我们选择研究神经元细胞健康的两个重要调节途径:(1)自噬 - 溶酶体途径,它对正确神经元功能所必需的货物运输很重要,以及(2)调节细胞外谷氨酸水平的兴奋性氨基酸转运体(EAATs)。使用ARSACS小鼠模型(Sacs /),我们发现易损的小脑前部而非抗性的后部小脑中PCs的钠/氢交换体6(NHE6)显著减少。我们研究了在小脑中高表达的两种EAATs:EAAT1和EAAT4。在前叶和后叶中,胶质细胞EAAT1水平均显著降低,这可能导致兴奋性毒性。然而,神经元EAAT4蛋白仅在抗性的后部PCs中升高,可能抵消了小脑后部EAAT1减少的影响。这些结果表明ARSACS小脑的内吞途径可能受损,并且小脑蚓部抗性后部小叶中EAAT4谷氨酸转运体的升高可能有助于神经保护。