Ramasamy Divyasri, Mukundan Gopika, Ravipati Manaswini, Badhulika Sushmee
Center for Interdisciplinary Programs, Indian Institute of Technology, Hyderabad 502284, India.
Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502284, India.
ACS Appl Bio Mater. 2025 Jun 16;8(6):4707-4718. doi: 10.1021/acsabm.5c00091. Epub 2025 May 15.
In this study, we report the synthesis of ZrS nanoparticles embedded in a chitosan-based hydrogel (ZrS/CS hydrogel) for the electrochemical detection of amodiaquine (ADQ). The ZrS nanoparticles are synthesized via a hydrothermal synthesis technique. Morphologically, transmission electron microscopy images show that the ZrS nanoparticles agglomerated to form nanoclusters. Scanning electron microscopy images reveal the porous interconnected structure of the stacked hydrogel layer with ZrS nanoparticles that have a high surface area and electrochemically active sites. These ZrS nanoparticles embedded in the hydrogel enhanced the high electron transport during the redox process. Differential pulse voltammetry is employed to electrochemically detect ADQ in a wide linear range of 0.02 nM to 2 μM. The sensitivity of ADQ is calculated to be 1.138 μA/nM with a limit of detection of 0.4 nM and a limit of quantification of 1.33 nM. The possible mechanism behind the enhanced performance can be ascribed to the electrochemical oxidation of ADQ, its corresponding quinone-imine, and the improved interaction between the electrode and electrolyte solution, leading to enhanced electron transfer and more stable signals for electrochemical sensing. The sensor developed here has a highly selective response toward ADQ over other interferents such as NaCl, urea, uric acid, glucose, ascorbic acid, and dopamine. In simulated human serum, the sensor shows a recovery rate from 98.58 to 100.62%, suggesting its potential in developing electrochemical sensors. The repeatability and reproducibility results of the ZrS/CS hydrogel show excellent consistent results, with relative standard deviations of 3.41 and 3.46%, respectively, further affirming the reliability of the sensor. This approach opens up future research directions for detecting various analytes in point-of-care and other biomedical devices.
在本研究中,我们报道了嵌入壳聚糖基水凝胶(ZrS/CS水凝胶)中的ZrS纳米颗粒用于阿莫地喹(ADQ)的电化学检测的合成。ZrS纳米颗粒通过水热合成技术合成。从形态学上看,透射电子显微镜图像显示ZrS纳米颗粒团聚形成纳米团簇。扫描电子显微镜图像揭示了堆叠水凝胶层与具有高表面积和电化学活性位点的ZrS纳米颗粒的多孔互连结构。这些嵌入水凝胶中的ZrS纳米颗粒增强了氧化还原过程中的高电子传输。采用差分脉冲伏安法在0.02 nM至2 μM的宽线性范围内对ADQ进行电化学检测。计算得出ADQ的灵敏度为1.138 μA/nM,检测限为0.4 nM,定量限为1.33 nM。性能增强背后的可能机制可归因于ADQ及其相应的醌亚胺的电化学氧化,以及电极与电解质溶液之间改善的相互作用,从而导致增强的电子转移和更稳定的电化学传感信号。此处开发的传感器对ADQ的响应具有高度选择性,优于其他干扰物,如NaCl、尿素、尿酸、葡萄糖、抗坏血酸和多巴胺。在模拟人血清中,该传感器的回收率为98.58%至100.62%,表明其在开发电化学传感器方面的潜力。ZrS/CS水凝胶的重复性和再现性结果显示出极好的一致结果,相对标准偏差分别为3.41%和3.46%,进一步证实了该传感器的可靠性。这种方法为在即时护理和其他生物医学设备中检测各种分析物开辟了未来的研究方向。