Suppr超能文献

高温天气如何影响游客对自然景观的感知和情绪?对中国武夷山市的机器学习分析。

How does high temperature weather affect tourists' nature landscape perception and emotions? A machine learning analysis of Wuyishan City, China.

作者信息

Ye Cuicui, Chen Zhengyan, Ding Zheng

机构信息

College of Art, Wuyi University, Mount Wuyi, Fujian, China.

College of Arts College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

出版信息

PLoS One. 2025 May 15;20(5):e0323566. doi: 10.1371/journal.pone.0323566. eCollection 2025.

Abstract

Natural landscapes are crucial resources for enhancing visitor experiences in ecotourism destinations. Previous research indicates that high temperatures may impact tourists' perception of landscapes and emotions. Still, the potential value of natural landscape perception in regulating tourists' emotions under high-temperature conditions remains unclear. In this study, we employed machine learning models such as LSTM-CNN, Hrnet, and XGBoost, combined with hotspot analysis and SHAP methods, to compare and reveal the potential impacts of natural landscape elements on tourists' emotions under different temperature conditions. The results indicate: (1) Emotion prediction and spatial analysis reveal a significant increase in the proportion of negative emotions under high-temperature conditions, reaching 30.1%, with negative emotion hotspots concentrated in the downtown area, whereas, under non-high temperature conditions, negative emotions accounted for 14.1%, with a more uniform spatial distribution. (2) Under non-high temperature conditions, the four most influential factors on tourists' emotions were Color complexity (0.73), Visual entropy (0.71), Greenness (0.68), and Aquatic rate (0.6). In contrast, under high-temperature conditions, the most influential factors were Greenness (0.6), Openness (0.56), Visual entropy (0.55), and Color complexity (0.55). (3) Compared to non-high temperature conditions, high temperatures enhanced the positive effects of environmental perception on emotions, with Greenness (0.94), Color complexity (0.84), and Enclosure (0.71) showing stable positive impacts. Additionally, aquatic elements under high-temperature conditions had a significant emotional regulation effect (contribution of 1.05), effectively improving the overall visitor experience. This study provides a data foundation for optimizing natural landscapes in ecotourism destinations, integrating the advantages of various machine learning methods, and proposing a framework for data collection, comparison, and evaluation of natural landscape perception under different temperature conditions. It thoroughly explores the potential of natural landscapes to enhance visitor experiences under various temperature conditions and provides sustainable planning recommendations for the sustainable conservation of natural ecosystems and ecotourism.

摘要

自然景观是提升生态旅游目的地游客体验的关键资源。以往研究表明,高温可能会影响游客对景观的感知和情绪。然而,在高温条件下自然景观感知对游客情绪的调节作用的潜在价值仍不明确。在本研究中,我们采用了长短期记忆卷积神经网络(LSTM-CNN)、高分辨率网络(Hrnet)和极端梯度提升(XGBoost)等机器学习模型,结合热点分析和SHAP方法,来比较和揭示不同温度条件下自然景观元素对游客情绪的潜在影响。结果表明:(1)情绪预测和空间分析显示,高温条件下负面情绪的比例显著增加,达到30.1%,负面情绪热点集中在市中心区域;而在非高温条件下,负面情绪占14.1%,空间分布更为均匀。(2)在非高温条件下,对游客情绪影响最大的四个因素是色彩复杂度(0.73)、视觉熵(0.71)、绿度(0.68)和水域率(0.6)。相比之下,在高温条件下,影响最大的因素是绿度(0.6)、开放性(0.56)、视觉熵(0.55)和色彩复杂度(0.55)。(3)与非高温条件相比,高温增强了环境感知对情绪的积极影响,绿度(0.94)、色彩复杂度(0.84)和围合度(0.71)显示出稳定的积极影响。此外,高温条件下的水域元素具有显著的情绪调节作用(贡献值为1.05),有效提升了游客的整体体验。本研究为优化生态旅游目的地的自然景观提供了数据基础,整合了多种机器学习方法的优势,并提出了一个在不同温度条件下进行自然景观感知数据收集、比较和评估的框架。它深入探索了自然景观在不同温度条件下提升游客体验的潜力,并为自然生态系统和生态旅游的可持续保护提供了可持续规划建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3869/12080845/03a46fcca3ef/pone.0323566.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验