Zhuang Zile, Li Xuewei, Luo Yuxuan, Li Yihan, Ahmed Isse Said, Zhang Zheng, Luo Qizhi, Chen Xuncai
Department of Forensic Toxicology, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
Institute of Forensic Science XiangTan City Public Security Bureau, Xiangtan, PR China.
J Hazard Mater. 2025 Aug 15;494:138598. doi: 10.1016/j.jhazmat.2025.138598. Epub 2025 May 12.
Etomidate (ETO), a widely used anesthetic, has emerged as a concerning environmental contaminant due to its increasing misuse and demonstrated neurotoxicity in aquatic organisms. This study employed an integrated multi-omics strategy to investigate the developmental neurotoxic effects of ETO in zebrafish (Danio rerio). ETO exposure induced dose-dependent toxicity in zebrafish embryos, characterized by decreased hatching rates (10-20 %), elevated mortality (up to 30 %), and morphological abnormalities such as scoliosis and pericardial edema. Behavioral assays revealed marked locomotor suppression (40-65 % reduction) and disrupted circadian rhythmicity. Neurochemical profiling indicated a 2.1-fold increase in dopamine levels, accompanied by significant reductions in GABAergic (38 %) and serotonergic (42 %) signaling, consistent with transcriptomic downregulation of related pathway genes. Metabolomic analysis revealed dysregulated lipid metabolism, including a 3.2-fold increase in eicosapentaenoic acid (EPA), and perturbations in phenylalanine metabolism. Transgenic zebrafish models (Tg(hb9:eGFP), Tg(coro1a:DsRed), Tg(elavl3:GCaMP6f)) further demonstrated motor neuron damage, inflammatory cell infiltration in the brain, and disrupted Ca dynamics, indicating blood-brain barrier disruption and neuroinflammation responses. Molecular docking analysis confirmed ETO's binding affinity for GABA-A receptors, aligning with observed neurotransmitter imbalances. These findings elucidate ETO's neurotoxic mechanisms, involving neurotransmitter imbalance, metabolic disruption, and neuroinflammatory. The results underscore the dual threat of ETO as both an emerging aquatic pollutant and a developmental neurotoxicant, highlighting the urgent need for stricter environmental monitoring and a reevaluation of its safety profile, particularly during critical developmental windows.
依托咪酯(ETO)是一种广泛使用的麻醉剂,由于其滥用现象日益增多,并在水生生物中表现出神经毒性,已成为一种令人担忧的环境污染物。本研究采用综合多组学策略,研究ETO对斑马鱼(Danio rerio)发育的神经毒性作用。ETO暴露在斑马鱼胚胎中诱导了剂量依赖性毒性,表现为孵化率降低(10%-20%)、死亡率升高(高达30%)以及脊柱侧凸和心包水肿等形态异常。行为分析显示运动明显受抑制(降低40%-65%)且昼夜节律紊乱。神经化学分析表明多巴胺水平增加2.1倍,同时GABA能(38%)和5-羟色胺能(42%)信号显著降低,这与相关通路基因的转录组下调一致。代谢组学分析揭示了脂质代谢失调,包括二十碳五烯酸(EPA)增加3.2倍以及苯丙氨酸代谢紊乱。转基因斑马鱼模型(Tg(hb9:eGFP)、Tg(coro1a:DsRed)、Tg(elavl3:GCaMP6f))进一步证明了运动神经元损伤、大脑中的炎症细胞浸润以及钙动力学紊乱,表明血脑屏障破坏和神经炎症反应。分子对接分析证实了ETO对GABA-A受体的结合亲和力,与观察到的神经递质失衡相符。这些发现阐明了ETO的神经毒性机制,包括神经递质失衡、代谢紊乱和神经炎症。结果强调了ETO作为一种新兴的水生污染物和发育神经毒性剂的双重威胁,突出了迫切需要更严格的环境监测以及重新评估其安全性,特别是在关键发育窗口期间。