Youseif Sameh H, El-Megeed Fayrouz H Abd, Soliman May S, Ageez Amr, Mohamed Akram H, Ali Saher A, El-Kholy Amani A
School of Biotechnology, Nile University, Giza, 12677, Egypt.
Department of Microbial Genetic Resources, National Gene Bank (NGB), Agricultural Research Center (ARC), Giza, 12619, Egypt.
BMC Microbiol. 2025 May 15;25(1):294. doi: 10.1186/s12866-025-04002-7.
The swift emergence of antibiotic resistance genes (ARGs) across interconnected One Health compartments poses a significant global threat. Although plant growth-promoting (PGP) bacteria possess numerous attributes beneficial to host plants, many of these bacteria also harbor ARGs, necessitating a focused assessment of their negative implications. In this context, here we performed whole genome sequencing of 14 PGP endophytic strains isolated from root nodules of faba beans, belonging to three Klebsiella oxytoca species complex (KoSC): K. grimontii (n = 5), K. michiganensis (n = 5), and K. pasteurii (n = 4). We performed comparative genomics, molecular typing, and pangenome analyses on these strains. We identified significant diversity within the KoSC population, classifying the strains into five sequence types (STs), three of which are novel to this study (ST-542, ST-569, and ST-629). Phylogenomic analysis revealed that the bacterial strains clustered more closely by ST than by their source of isolation. Annotation of gene clusters indicated that all assembled genomes are enriched with genes involved in PGP activities, alongside a robust array of genes conferring tolerance to abiotic stresses. Importantly, our findings disclosed that the 14 assembled genomes harbored multiple ARGs, conferring resistance to various antibiotic classes, with 71% of the population classified as multidrug-resistant based on the in vitro antibiotic susceptibility assay. Furthermore, all genomes contained an array of virulence factors critical for survival, pathogenesis, biofilm formation, and root colonization. In conclusion, this study substantiates the hypothesis that certain PGP bacteria may serve as potential reservoirs of multidrug resistance, posing significant public health risks. Thus, the future advancement of bacteria-based biofertilizers should integrate environmental considerations and monitor their impact on antibiotic resistance dissemination in soil ecosystems.
抗生素抗性基因(ARGs)在相互关联的“同一健康”各区域中迅速出现,对全球构成了重大威胁。尽管促进植物生长(PGP)的细菌具有许多对宿主植物有益的特性,但其中许多细菌也携带ARGs,因此有必要重点评估它们的负面影响。在此背景下,我们对从蚕豆根瘤中分离出的14株PGP内生菌株进行了全基因组测序,这些菌株属于三种产酸克雷伯菌物种复合体(KoSC):格氏克雷伯菌(n = 5)、密歇根克雷伯菌(n = 5)和巴斯德克雷伯菌(n = 4)。我们对这些菌株进行了比较基因组学、分子分型和泛基因组分析。我们在KoSC群体中发现了显著的多样性,将这些菌株分为五种序列类型(STs),其中三种是本研究中的新类型(ST-542、ST-569和ST-629)。系统发育基因组分析表明,细菌菌株按ST聚类比按其分离来源聚类更紧密。基因簇注释表明,所有组装的基因组都富含参与PGP活动的基因,以及一系列赋予对非生物胁迫耐受性的基因。重要的是,我们的研究结果表明,14个组装的基因组含有多个ARGs,赋予对各种抗生素类别的抗性,根据体外抗生素敏感性试验,71%的群体被归类为多重耐药。此外,所有基因组都包含一系列对生存、发病机制、生物膜形成和根定殖至关重要的毒力因子。总之,本研究证实了以下假设:某些PGP细菌可能是多重耐药性的潜在储存库,对公共卫生构成重大风险。因此,基于细菌的生物肥料的未来发展应综合考虑环境因素,并监测它们对土壤生态系统中抗生素抗性传播的影响。