Suppr超能文献

机器学习和深度学习在肌肉骨骼医学中的应用:一篇叙述性综述。

Applications of machine learning and deep learning in musculoskeletal medicine: a narrative review.

作者信息

Feierabend Martina, Wolfgart Julius Michael, Praster Maximilian, Danalache Marina, Migliorini Filippo, Hofmann Ulf Krister

机构信息

Metabolic Reconstruction and Flux Modelling, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.

Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, 52074, Aachen, Germany.

出版信息

Eur J Med Res. 2025 May 15;30(1):386. doi: 10.1186/s40001-025-02511-9.

Abstract

Artificial intelligence (AI), with its technologies such as machine perception, robotics, natural language processing, expert systems, and machine learning (ML) with its subset deep learning, have transformed patient care and administration in all fields of modern medicine. For many clinicians, however, the nature, scope, and resulting possibilities of ML and deep learning might not yet be fully clear. This narrative review provides an overview of the application of ML and deep learning in musculoskeletal medicine. It first introduces the concept of AI and machine learning and its associated fields. Different machine concepts such as supervised, unsupervised and reinforcement learning will then be presented with current applications and clinical perspective. Finally deep learning applications will be discussed. With significant improvements over the last decade, ML and its subset deep learning today offer potent tools for numerous applications to implement in clinical practice. While initial setup costs are high, these investments can reduce workload and cost globally. At the same time, many challenges remain, such as standardisation in data labelling and often insufficient validity of the obtained results. In addition, legal aspects still will have to be clarified. Until good analyses and predictions are obtained by an ML tool, patience in training and suitable data sets are required. Awareness of the strengths of ML and the limitations that lie within it will help put this technique to good use.

摘要

人工智能(AI)及其诸如机器感知、机器人技术、自然语言处理、专家系统等技术,还有机器学习(ML)及其子领域深度学习,已经改变了现代医学各个领域的患者护理和管理。然而,对于许多临床医生来说,机器学习和深度学习的本质、范围以及由此产生的可能性可能还不完全清楚。这篇叙述性综述概述了机器学习和深度学习在肌肉骨骼医学中的应用。它首先介绍了人工智能和机器学习的概念及其相关领域。然后将介绍不同的机器学习概念,如监督学习、无监督学习和强化学习,并阐述其当前应用和临床前景。最后将讨论深度学习的应用。在过去十年中,机器学习及其子领域深度学习有了显著改进,如今为众多临床实践应用提供了强大工具。虽然初始设置成本很高,但这些投资可以在全球范围内减少工作量和成本。同时,仍然存在许多挑战,例如数据标注的标准化以及所获结果的有效性往往不足。此外,法律方面仍有待澄清。在通过机器学习工具获得良好的分析和预测之前,需要耐心进行训练并准备合适的数据集。了解机器学习的优势及其内在局限性将有助于更好地利用这项技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3008/12080048/e023954a2ed5/40001_2025_2511_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验