Nakama Takahiro, Tadokoro Miri, Ebihara Risa, Yagi-Utsumi Maho, Kato Koichi, Fujita Makoto
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 277-0882 Japan
Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan.
Chem Sci. 2025 Apr 29. doi: 10.1039/d5sc00782h.
Enhancing protein-ligand affinity is crucial for regulating protein function; however, redesigning ligand molecules often requires extensive trial and error. In this study, we demonstrate proximity-induced ligand binding to a protein's active site by confining it within coordination cages, thereby enabling precise control of protein activity. Co-encapsulation within the confined cavity of the cage brings lysozyme and a low-affinity saccharide into close proximity, resulting in a 10-fold decrease in the apparent dissociation constant of the monosaccharide. The significant enhancement of the saccharide binding to the lysozyme active site effectively inhibited its enzymatic activity. NMR studies confirmed the formation of lysozyme-saccharide complexes through enhanced weak interactions, which are otherwise unobservable, facilitated by the confined cavity. This cage confinement strategy thus offers a novel approach for ligand-based functional control of native proteins, eliminating the need for elaborate ligand design and protein engineering.
增强蛋白质 - 配体亲和力对于调节蛋白质功能至关重要;然而,重新设计配体分子通常需要大量反复试验。在本研究中,我们通过将配体限制在配位笼中来证明其接近诱导与蛋白质活性位点的结合,从而实现对蛋白质活性的精确控制。在笼的受限腔内共同封装使溶菌酶和低亲和力糖类紧密接近,导致单糖的表观解离常数降低了10倍。糖类与溶菌酶活性位点结合的显著增强有效抑制了其酶活性。核磁共振研究证实,通过受限腔促进了原本不可观察到的增强弱相互作用,从而形成了溶菌酶 - 糖类复合物。因此,这种笼限制策略为基于配体的天然蛋白质功能控制提供了一种新方法,无需复杂的配体设计和蛋白质工程。