Suppr超能文献

基于金属有机骨架的酶生物复合材料。

Metal-Organic Framework-Based Enzyme Biocomposites.

机构信息

Department of Chemistry and Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia.

Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.

出版信息

Chem Rev. 2021 Feb 10;121(3):1077-1129. doi: 10.1021/acs.chemrev.0c01029. Epub 2021 Jan 13.

Abstract

Because of their efficiency, selectivity, and environmental sustainability, there are significant opportunities for enzymes in chemical synthesis and biotechnology. However, as the three-dimensional active structure of enzymes is predominantly maintained by weaker noncovalent interactions, thermal, pH, and chemical stressors can modify or eliminate activity. Metal-organic frameworks (MOFs), which are extended porous network materials assembled by a bottom-up building block approach from metal-based nodes and organic linkers, can be used to afford protection to enzymes. The self-assembled structures of MOFs can be used to encase an enzyme in a process called encapsulation when the MOF is synthesized in the presence of the biomolecule. Alternatively, enzymes can be infiltrated into mesoporous MOF structures or surface bound via covalent or noncovalent processes. Integration of MOF materials and enzymes in this way affords protection and allows the enzyme to maintain activity in challenge conditions (e.g., denaturing agents, elevated temperature, non-native pH, and organic solvents). In addition to forming simple enzyme/MOF biocomposites, other materials can be introduced to the composites to improve recovery or facilitate advanced applications in sensing and fuel cell technology. This review canvasses enzyme protection via encapsulation, pore infiltration, and surface adsorption and summarizes strategies to form multicomponent composites. Also, given that enzyme/MOF biocomposites straddle materials chemistry and enzymology, this review provides an assessment of the characterization methodologies used for MOF-immobilized enzymes and identifies some key parameters to facilitate development of the field.

摘要

由于酶在化学合成和生物技术中具有高效、选择性和环境可持续性,因此它们具有很大的应用潜力。然而,由于酶的三维活性结构主要由较弱的非共价相互作用维持,因此热、pH 值和化学胁迫因素会改变或消除其活性。金属-有机骨架(MOF)是一种由基于金属的节点和有机连接体通过自下而上的构建块方法组装而成的扩展多孔网络材料,可用于保护酶。当 MOF 在生物分子存在的情况下合成时,MOF 的自组装结构可用于将酶封装在称为封装的过程中。或者,酶可以通过共价或非共价过程渗透到介孔 MOF 结构或表面结合。以这种方式整合 MOF 材料和酶可以提供保护,并使酶在挑战条件下(例如变性剂、高温、非天然 pH 值和有机溶剂)保持活性。除了形成简单的酶/ MOF 生物复合材料外,还可以向复合材料中引入其他材料以提高回收率或促进在传感和燃料电池技术中的高级应用。本文综述了通过封装、孔渗透和表面吸附来保护酶的策略,并总结了形成多组分复合材料的策略。此外,由于酶/ MOF 生物复合材料跨越了材料化学和酶学,因此本文评估了用于固定化酶的 MOF 的表征方法,并确定了一些关键参数,以促进该领域的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验