血液系统恶性肿瘤中的机器学习

Machine learning in haematological malignancies.

作者信息

Radakovich Nathan, Nagy Matthew, Nazha Aziz

机构信息

Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Case Western Reserve University, Cleveland OH, USA.

Center for Clinical Artificial Intelligence, Cleveland Clinic, Case Western Reserve University, Cleveland OH, USA; Department of Hematology and Medical Oncology, Cleveland Clinic, Case Western Reserve University, Cleveland OH, USA.

出版信息

Lancet Haematol. 2020 Jul;7(7):e541-e550. doi: 10.1016/S2352-3026(20)30121-6.

Abstract

Machine learning is a branch of computer science and statistics that generates predictive or descriptive models by learning from training data rather than by being rigidly programmed. It has attracted substantial attention for its many applications in medicine, both as a catalyst for research and as a means of improving clinical care across the cycle of diagnosis, prognosis, and treatment of disease. These applications include the management of haematological malignancy, in which machine learning has created inroads in pathology, radiology, genomics, and the analysis of electronic health record data. As computational power becomes cheaper and the tools for implementing machine learning become increasingly democratised, it is likely to become increasingly integrated into the research and practice landscape of haematology. As such, machine learning merits understanding and attention from researchers and clinicians alike. This narrative Review describes important concepts in machine learning for unfamiliar readers, details machine learning's current applications in haematological malignancy, and summarises important concepts for clinicians to be aware of when appraising research that uses machine learning.

摘要

机器学习是计算机科学和统计学的一个分支,它通过从训练数据中学习来生成预测性或描述性模型,而不是通过严格的编程。它在医学中的众多应用引起了广泛关注,既作为研究的催化剂,又作为在疾病诊断、预后和治疗全过程中改善临床护理的一种手段。这些应用包括血液系统恶性肿瘤的管理,其中机器学习已在病理学、放射学、基因组学以及电子健康记录数据分析等领域取得进展。随着计算能力变得更加廉价,以及实施机器学习的工具日益普及,它很可能会越来越多地融入血液学的研究和实践领域。因此,机器学习值得研究人员和临床医生的理解与关注。这篇叙述性综述为不熟悉机器学习的读者介绍了其重要概念,详述了机器学习目前在血液系统恶性肿瘤中的应用,并总结了临床医生在评估使用机器学习的研究时应了解的重要概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索