文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能和机器学习在肺移植中的应用:综述

Application of artificial intelligence and machine learning in lung transplantation: a comprehensive review.

作者信息

Liu Xiting, Chen Wenqian, Du Wenwen, Li Pengmei, Wang Xiaoxing

机构信息

Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China.

Department of Pharmacy Administration, Clinical Pharmacy School of Pharmaceutical Sciences, Peking University, Beijing, China.

出版信息

Front Digit Health. 2025 May 1;7:1583490. doi: 10.3389/fdgth.2025.1583490. eCollection 2025.


DOI:10.3389/fdgth.2025.1583490
PMID:40376618
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12078212/
Abstract

Lung transplantation (LTx) is an effective method for treating end-stage lung disease. The management of lung transplant recipients is a complex, multi-stage process that involves preoperative, intraoperative, and postoperative phases, integrating multidimensional data such as demographics, clinical data, pathology, imaging, and omics. Artificial intelligence (AI) and machine learning (ML) excel in handling such complex data and contribute to preoperative assessment and postoperative management of LTx, including the optimization of organ allocation, assessment of donor suitability, prediction of patient and graft survival, evaluation of quality of life, and early identification of complications, thereby enhancing the personalization of clinical decision-making. However, these technologies face numerous challenges in real-world clinical applications, such as the quality and reliability of datasets, model interpretability, physicians' trust in the technology, and legal and ethical issues. These problems require further research and resolution so that AI and ML can more effectively enhance the success rate of LTx and improve patients' quality of life.

摘要

肺移植(LTx)是治疗终末期肺病的有效方法。肺移植受者的管理是一个复杂的多阶段过程,涉及术前、术中和术后阶段,整合了诸如人口统计学、临床数据、病理学、影像学和组学等多维度数据。人工智能(AI)和机器学习(ML)在处理此类复杂数据方面表现出色,并有助于肺移植的术前评估和术后管理,包括优化器官分配、评估供体适用性、预测患者和移植物存活、评估生活质量以及早期识别并发症,从而增强临床决策的个性化。然而,这些技术在实际临床应用中面临诸多挑战,如数据集的质量和可靠性、模型可解释性、医生对该技术的信任以及法律和伦理问题。这些问题需要进一步研究和解决,以便AI和ML能够更有效地提高肺移植的成功率并改善患者的生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157d/12078212/874011a7aa71/fdgth-07-1583490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157d/12078212/1b7122f946bc/fdgth-07-1583490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157d/12078212/874011a7aa71/fdgth-07-1583490-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157d/12078212/1b7122f946bc/fdgth-07-1583490-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/157d/12078212/874011a7aa71/fdgth-07-1583490-g002.jpg

相似文献

[1]
Application of artificial intelligence and machine learning in lung transplantation: a comprehensive review.

Front Digit Health. 2025-5-1

[2]
The integration of artificial intelligence into clinical medicine: Trends, challenges, and future directions.

Dis Mon. 2025-3-25

[3]
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.

Therap Adv Gastroenterol. 2025-2-23

[4]
The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A comprehensive review.

Curr Res Transl Med. 2025-1-6

[5]
Artificial intelligence, machine learning, and deep learning in liver transplantation.

J Hepatol. 2023-6

[6]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[7]
Advancing the frontier of artificial intelligence on emerging technologies to redefine cancer diagnosis and care.

Comput Biol Med. 2025-6

[8]
The Medicine Revolution Through Artificial Intelligence: Ethical Challenges of Machine Learning Algorithms in Decision-Making.

Cureus. 2024-9-14

[9]
Transforming liver transplant allocation with artificial intelligence and machine learning: a systematic review.

BMC Med Inform Decis Mak. 2025-2-24

[10]
Artificial Intelligence in Thoracic Surgery: A Review Bridging Innovation and Clinical Practice for the Next Generation of Surgical Care.

J Clin Med. 2025-4-16

本文引用的文献

[1]
Generalizability assessment of AI models across hospitals in a low-middle and high income country.

Nat Commun. 2024-9-27

[2]
Machine learning model predicts airway stenosis requiring clinical intervention in patients after lung transplantation: a retrospective case-controlled study.

BMC Med Inform Decis Mak. 2024-8-19

[3]
Knowledge, Attitude and Practice of Radiologists Regarding Artificial Intelligence in Medical Imaging.

J Multidiscip Healthc. 2024-7-4

[4]
Survival Tree Provides Individualized Estimates of Survival After Lung Transplant.

J Surg Res. 2024-7

[5]
Identification of Neutrophil Extracellular Trap-Related Gene Expression Signatures in Ischemia Reperfusion Injury During Lung Transplantation: A Transcriptome Analysis and Clinical Validation.

J Inflamm Res. 2024-2-12

[6]
A radiographic score for human donor lungs on ex vivo lung perfusion predicts transplant outcomes.

J Heart Lung Transplant. 2024-5

[7]
Novel dimensionality reduction method, Taelcore, enhances lung transplantation risk prediction.

Comput Biol Med. 2024-2

[8]
Understanding the black-box: towards interpretable and reliable deep learning models.

PeerJ Comput Sci. 2023-11-29

[9]
Identification of cuproptosis-related biomarkers and analysis of immune infiltration in allograft lung ischemia-reperfusion injury.

Front Mol Biosci. 2023-11-21

[10]
Computed tomography-based machine learning for donor lung screening before transplantation.

J Heart Lung Transplant. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索