Suppr超能文献

使用多特征点跟踪算法对超声图像进行自动分析以测量肌腱结合部的移动距离

Automated Analysis of Ultrasound Images to Measure Muscle-Tendon Junction Excursions by Using the Multiple Feature Point Tracking Algorithm.

作者信息

Miyazawa Taku, Kubota Keisuke, Hanawa Hiroki, Hirata Keisuke, Endo Tatsuya, Fujino Tsutomu, Onitsuka Katsuya, Yokoyama Moeka, Kanemura Naohiko

机构信息

Department of Rehabilitation, University of Human Arts and Sciences, Saitama, Japan.

Graduate Course of Health and Social Services, Saitama Prefectural University, Saitama, Japan.

出版信息

Ultrason Imaging. 2025 Jul;47(3-4):125-133. doi: 10.1177/01617346251340322. Epub 2025 May 16.

Abstract

Ultrasound imaging is used to measure the muscle-tendon junction (MTJ) to investigate the mechanical properties of the tendon and the interaction of the muscle-tendon unit in vivo. Although the MTJ can be observed clearly in the resting state, accurate tracking of the MTJ is difficult during muscle contractions due to changes in its morphology. We devised a novel method using an algorithm that extracts and tracks multiple feature points in ultrasound images to automatically measure the MTJ that moves during muscle contraction. Instead of using a single reference image, multiple feature points are used to improve the tracking performance during the deformation of the MTJ. Subsequently, we experimentally evaluated the usefulness of this method. Tests were conducted on 20 healthy participants performing isometric maximal contractions, and ultrasound echo images of the medial gastrocnemius and Achilles tendon junctions were recorded. MTJ excursion was calculated using the developed multiple feature point algorithm and two conventional methods-multi-updating template-matching and modified Lucas-Kanade (LK)-based on automatic and manual analyses. The root mean square error (RMSE) was used to compare the results. The intraclass correlation coefficient (ICC) was used to evaluate the repeatability among examiners. RMSE was 1.57 ± 0.62 for the proposed algorithm and 2.18 ± 0.89 and 1.84 ± 1.13 for the conventional methods. The Bland-Altman plot showed that the proposed method exhibited a lower 95% confidence interval than the two conventional methods. Thus, the proposed algorithm had the smallest error. Furthermore, the ICC values were 0.96, 0.40, and 0.86 for the proposed algorithm, multi-updating template-matching, and the modified LK method, respectively. When tracking an MTJ excursion that flexibly changes its shape, the use of multiple feature points provides robust results and achieves tracking that approximates the manual analysis results.

摘要

超声成像用于测量肌肉 - 肌腱连接点(MTJ),以研究肌腱的力学特性以及体内肌肉 - 肌腱单元的相互作用。尽管在静息状态下可以清晰观察到MTJ,但由于其形态变化,在肌肉收缩过程中准确跟踪MTJ很困难。我们设计了一种新颖的方法,使用一种算法来提取和跟踪超声图像中的多个特征点,以自动测量肌肉收缩时移动的MTJ。该方法不是使用单个参考图像,而是使用多个特征点来提高MTJ变形期间的跟踪性能。随后,我们通过实验评估了该方法的实用性。对20名进行等长最大收缩的健康参与者进行了测试,并记录了腓肠肌内侧和跟腱连接点的超声回波图像。使用开发的多特征点算法以及基于自动和手动分析的两种传统方法——多次更新模板匹配和改进的基于Lucas - Kanade(LK)算法来计算MTJ偏移。使用均方根误差(RMSE)比较结果。使用组内相关系数(ICC)评估检查者之间的可重复性。所提出算法的RMSE为1.57±0.62,传统方法的RMSE分别为2.18±0.89和1.84±1.13。Bland - Altman图显示,所提出的方法比两种传统方法具有更低的95%置信区间。因此,所提出的算法误差最小。此外,所提出算法、多次更新模板匹配和改进的LK方法的ICC值分别为0.96、0.40和0.86。当跟踪形状灵活变化的MTJ偏移时,使用多个特征点可提供可靠的结果,并实现接近手动分析结果的跟踪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验